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Abstract In this paper, I investigate the formal relationships between two

types of exhaustivity operators that have been discussed in the literature,

one based on minimal worlds/models, noted exhmw (van Rooij & Schulz

2004, Schulz & van Rooij 2006, Spector 2003, 2006, with roots in Szabolcsi

1983, Groenendijk & Stokhof 1984), and one based on the notion of innocent

exclusion, noted exhie (Fox 2007). Among others, I prove that whenever the set

of alternatives relative to which exhaustification takes place is semantically

closed under conjunction, the two operators are necessarily equivalent.

Together with other results, this provides a method to simplify, in some

cases, the computation associated with exhie, and, in particular, to drastically

reduce the number of alternatives to be considered.

Besides their practical relevance, these results clarify the formal relationships

between both types of operators.
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1 Introduction

In the literature on scalar implicatures and exhaustivity effects, it has proved
useful to define so-called exhaustivity operators. Such operators take two
arguments, a proposition ϕ and a set of propositions ALT (the alternatives
of ϕ), and return a proposition that entails ϕ, which corresponds to the
pragmatically strengthened meaning of ϕ (the conjunction of ϕ and its
quantity implicatures). A simple (and ultimately inadequate) version of the
exhaustivity operator, which is a variation on Krifka’s (1993) entry for the
word only, is the following:

(1) a. exhkrifka(ALT,ϕ) =
λw.ϕ(w) = 1∧∀a((a ∈ ALT∧ a(w) = 1)→ (ϕ ⊆ a))

b. Equivalently:1

exhkrifka(ALT,ϕ) =ϕ ∧
∧
{¬a : a ∈ ALT∧ϕ does not entail a}

c. In words:
exhkrifka(ALT,ϕ) states that ϕ is true and that every member of
ALT that is true is entailed by ϕ, i.e., every non-entailed member
of ALT is false.

Now, this operator has been known for quite some time to be inadequate,
particularly for disjunctive sentences. For instance, under standard assump-
tions, a sentence S of the form p ∨ (q ∨ r) has, among its alternatives, the
sentence α = p∨(q∧q). Because this alternative is not entailed by S, applying
exhkrifka to S and its set of alternatives will result in a meaning that entails
the negation of α, hence the negation of p— which is clearly a wrong result
(cf. Chierchia 2004).

Among the various solutions to this problem, a quite common one con-
sists in a) weakening the definition of the exhaustivity operator so that it is no
longer the case that it negates all non-entailed alternatives, and b) ensuring
that when a disjunctive phrase a∨ b occurs in a sentence S, which can be
represented as S(a∨ b), the set of alternatives for S includes S(a) and S(b)
(cf. Sauerland 2004, Spector 2003, 2007).

Two more sophisticated exhaustivity operators have been proposed along
these lines, both of which improve on exhkrifka.

1 When X is a set of propositions,
∧
X refers to the grand conjunction of its members, i.e., the

proposition that is true in a world u if and only if every member of X is true in u, and
∨
X

refers to the grand disjunction of the members of X, i.e., the proposition that is true in a
world u if and only if at least one member of X is true in u.
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The older one (van Rooij & Schulz 2004, Schulz & van Rooij 2006, Spector
2003, 2006, 2007, with roots in Szabolcsi 1983, Groenendijk & Stokhof 1984)
works informally as follows. It takes two arguments, a set of alternatives
ALT (henceforth ‘alternative set’) and a proposition ϕ, and it returns the
proposition that consists of all the ϕ−worlds that minimize the set of true
alternatives. That is, the exhaustification of a proposition ϕ retains the
set of ϕ−worlds in which as few alternatives as possible are true. I will
henceforth use the notation exhmw to refer to this operator. Under a specific
formalization of the Gricean reasoning, the output of exhmw can be proven
to be equivalent to the output of Gricean reasoning (van Rooij & Schulz 2004,
Schulz & van Rooij 2006, Spector 2003, 2006, 2007).

The second exhaustivity operator was proposed more recently in Fox
2007. Fox’s operator also takes a set of alternatives ALT and a proposition
ϕ as arguments, and it returns the conjunction of ϕ and of the negations
of some members of ALT, those that are innocently excludable, in a sense
made precise. I will use exhie to refer to this operator. Fox motivates exhie by
showing that the free-choice effect triggered by disjunction in the scope of
a possibility modal can be predicted to arise when exhie is applied twice to
the relevant sentences (provided some specific assumptions are made about
the nature of alternative sets). As Fox discusses, this account of free-choice
effects would not work if one used exhmw rather than exhie.

Before moving on, it is worth noticing that in certain cases, the choice
between exhkrifka, exhmw and exhie does not matter. In fact, whenever the
result of exhkrifka is non-contradictory, the three operators are equivalent
(Fact 1 below).

Recently, a number of works on scalar implicatures have adopted exhie.
However, in many cases, one could have as well adopted exhmw , because
exhie and exhmw , in the relevant cases, deliver the same result, a fact that
sometimes goes unnoticed.2

The primary goal of this paper is to characterize the conditions under
which exhie and exhmw are equivalent. I will, more generally, investigate the
formal relationships between exhie and exhmw . As I will discuss shortly,

2 In particular, exhie is sometimes presented as motivated by the need to solve the problem
raised by sentences such as p ∨ (q ∨ r) without any reference to the fact that that exhmw ,
which was introduced more than 20 years before (Groenendijk & Stokhof 1984), is equivalent
to exhie for such cases — Fox (2007), which introduced exhie, does not fail to acknowledge
this fact.
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the formal results I will report have both practical and possibly theoretical
relevance. But first let me state some particularly relevant results (which are
reported in more formal terms and with some other results in section 3, and
proved in section 5):

1. Given a set of alternatives ALT, closing ALT under disjunction, or
conjunction, or both, cannot change anything for the output of exhmw
(Proposition 3 below).

2. Given a set of alternatives ALT, closing ALT under disjunction cannot
change anything for the output of exhie (Theorem 10 below)

3. Given a proposition ϕ and a set of alternatives ALT, if ALT is closed
under conjunction, both operators are equivalent, i.e., exhmw (ALT, ϕ)
= exhie(ALT, ϕ) (Theorem 9 below).

4. Given a proposition ϕ and a set of alternatives ALT, if the closure of
ALT under disjunction is itself closed under conjunction, then again
exhmw (ALT, ϕ) = exhie(ALT, ϕ) (Corollary 11 below).

5. Irrespective of whether ALT is closed under conjunction, given a
proposition ϕ and a set of alternatives ALT, an alternative a in ALT is
innocently excludable (in the technical sense that will be defined below)
if and only if exhmw (ALT, ϕ) entails ¬a. For this reason, exhie(ALT,
ϕ) can be straightforwardly defined in terms of exhmw (ALT, ϕ), and,
furthermore, exhmw (ALT,ϕ) always entails exhie(ALT,ϕ) (Propositions
6 and 7 and corollary 8).

6. Given a sentence S obtained from a set of elementary sentences E by
combining them with disjunction and conjunction, if S’s alternatives
ALT are determined on the basis of Sauerland’s (2004) procedure, then
applying exhie to S relative to ALT is equivalent to applying exhmw to
S relative to E (Theorem 12 below).

But why does this matter? First, these results are useful to identify the
cases that provide decisive evidence for or against one type of exhaustivity
operator. Trivially, when we are dealing with a case where the two operators
are known to be equivalent, nothing can be concluded from this case about
which operator should be used. Fox’s argument for using exhie is, obviously,
based on a case where the two operators deliver different results, precisely
because the alternative set he assumes is not closed under conjunction.
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Second, these results also have practical (and possibly theoretical) rele-
vance, as I will discuss in section 4. It will appear that computing the output
of exhmw is often easier than computing the result of exhie. The reason is
the following: given broadly accepted views about the alternatives triggered
by disjunction (based on Sauerland 2004), the number of alternatives to
consider quickly increases as a sentence’s complexity increases (Mascarenhas
2014). Now, it follows from Result 1 above that if one uses exhmw , it is often
possible to ignore most of the alternatives without any change in the output,
because it is sufficient to consider a subset of the alternatives whose closure
under disjunction and conjunction is the same as that of the original set. As
a result, exhmw is often more tractable than exhie. So even if one’s favorite
approach is based on exhie, in every case where the two operators are known
to yield the same result (e.g., when alternatives are closed under conjunc-
tion, or when the closure of alternatives under disjunction is closed under
conjunction, cf. Results 3 and 4), it will often be easier to work with exhmw .
And even in cases where the two operators do not yield the same result, the
fact that one can define exhie in terms of exhmw (Result 5) can help make the
innocent-exclusion operator more tractable.

At the same time, it is important to highlight the limitations of the
results reported in this paper. In particular, Result 6 (more formally stated as
Theorem 12 below) does not entail that, if we adopt Sauerland’s procedure for
computing alternatives, the outcome of exhie with respect to the full set of
alternatives is always the same as that of exhmw with respect to some smaller
set of alternatives. As stated, the result holds only for sentences whose
only alternative-inducing expressions are disjunction and conjunction and
where these disjunctions and conjunctions are not embedded under other
operators, that is, cases that can be modeled as sentences obtained from
atomic sentences by combining them with disjunction and conjunction — I
illustrate this point in the last paragraph of section 2.2.2 below. However,
there are cases which are not covered by Result 6 (i.e., Theorem 12) but where
alternative sets nevertheless happen to be closed under conjunction (or are
such that their closure under disjunction is closed under conjunction), so
that results 3 and 4 are applicable — which makes it possible to use exhmw in
order to compute the outcome of exhie.3

3 I believe that Result 6/Theorem 12 can be extended to some other configurations, but do not
attempt such an extension in this paper. For a number of cases which are not covered by
Theorem 12 as stated, it is easy, based on the results reported in this paper, to reduce the
computation of exhie to the application of exhmw relative to a small set of alternatives.
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In the next section, I will provide the necessary background: definitions
for both operators, and illustrations based on simple examples, showing that
both operators sometimes yield the same result, but not always.

2 Background and examples

2.1 Definitions

In the context of this paper, the notion of world is identical to that of model.
That is, a world assigns a denotation to every non-logical atomic expression
of the language, and, through compositional semantic rules, a truth-value to
every sentence in the language. The proposition expressed by a sentence is
the set of worlds in which this sentence is true. To mean that a proposition
ϕ is true (resp. false) in a world u (or, equivalently, that u makes ϕ true), I
write ϕ(u) = 1 (resp. ϕ(u) = 0), rather than u ∈ϕ (resp. u ∉ϕ). That is, I
sometimes use ϕ to represent the characteristic function of its denotation.
However, I also adopt the set-theoretic notationϕ ⊆ ψ to mean thatϕ entails
ψ.

When dealing with propositions rather than sentences, I use negation,
disjunction, conjunction, etc., as standing for their set-theoretic equivalent
(e.g., ¬ϕ denotes the set of worlds which do not belong to ϕ, disjunction
corresponds to union, etc.). To facilitate reading, I will often ignore the first
argument of exhie and exhmw (namely the alternative set), which is then
understood to be a certain set ALT, and will thus simply write exhmw(ϕ) and
exhie(ϕ), instead of exhmw(ALT,ϕ) and exhie(ALT,ϕ).

When I talk about a set of alternatives, I generally mean a set of proposi-
tions, not sentences. Of course, quite often alternatives are viewed as sen-
tences that are obtained from a given sentence by a number of syntactic
operations (such as replacement of a scalar item with another scalar item).
However, what counts for exh is the set of propositions that the alternatives
express. So when I talk, for instance, about the number of distinct alternatives
for a given sentence, under, say, Sauerland’s characterization of alternatives,
I am referring to the number of semantically distinct alternatives. There may
be a finite number of semantically distinct alternatives even if there are
infinitely many syntactic alternatives.

Definitions 1.
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1. Given a set of alternatives ALT, ≤ALT is the preorder over possible
worlds defined as follows:
u ≤ALT v iff {a ∈ ALT: a(u) = 1} ⊆ {a ∈ ALT: a(v) = 1}

2. Given a set of alternatives ALT,<ALT is the strict preorder over possible
worlds corresponding to ≤ALT :
u <ALT v iff u ≤ALT v ∧¬(v ≤ALT u).
(I.e., the alternatives that u makes true are a proper subset of those
that v makes true.)

I will sometimes omit the subscript ALT.

Definition 2. Exhaustivity operator based on minimal worlds (exhmw ).
Given a set of propositions ALT and a proposition ϕ,

exhmw(ALT ,ϕ) = {u : ϕ(u) = 1∧¬∃v(ϕ(v) = 1∧v <ALT u)}
Equivalently: exhmw(ALT ,ϕ) =ϕ ∩ {u : ¬∃v(ϕ(v) = 1∧ v <ALT u)}.

Fox’s operator is based on the notion of ‘innocent exclusion’, and its
definition is more complex, as it requires a number of intermediate steps.
My presentation is slightly different from Fox’s, but is fully equivalent. I start
with auxiliary definitions:

Definitions 3.

1. A set of propositions X is consistent if there exists a world u in which
every member of X is true.

2. Given a proposition ϕ and a set of alternatives ALT, a set of propo-
sitions E is (ALT ,ϕ)−compatible if and only if a) ϕ ∈ E, b) every
member of E distinct from ϕ is the negation of a member of ALT, and
c) E is consistent.

3. MC(ALT ,ϕ)−sets: A set is maximal (ALT,ϕ)−compatible (MC(ALT,ϕ)−set
for short) if it is (ALT,ϕ)−compatible and is not properly included in
any other (ALT,ϕ)−compatible set (sometimes the subscript (ALT ,ϕ)
will be omitted).

4. IE(ALT ,ϕ) = {ψ : ψ belongs to every MC(ALT ,ϕ)−set}.4

4 Note that, somewhat counter-intuitively, the set IE(ALT ,ϕ) is not the set of innocently ex-
cludable alternatives, but rather the set that contains ϕ and all the negations of innocently
excludable alternatives.
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5. An alternative a is innocently excludable given ALT and ϕ if and only
if ¬a ∈ IE(ALT ,ϕ).

Definition 4. Exhaustivity operator based on innocent exclusion (exhie).

exhie(ALT,ϕ) = {u : ∀ψ(ψ ∈ IE(ALT ,ϕ) → ψ(u) = 1)}.
Equivalently: exhie(ALT,ϕ) =

∧
IE(ALT ,ϕ)

Equivalently: exhie(ALT,ϕ) = ϕ ∧
∧
{¬a : a is a member of ALT that is

innocently excludable given ALT and ϕ}

2.2 Illustrations

2.2.1 An elementary case

Let us start with a very simple case where the two operators return the same
result: the case where a sentence ϕ has just one alternative, noted ψ, which
it does not entail.

Let us first see what happens with exhmw . We have u < v just in case
the set of propositions in {ϕ,ψ} that are true in u is a proper subset of the
ones that are true in v . Now consider all the ϕ−worlds. They divide into two
classes; worlds of type W1 where ϕ is true and ψ is false, and worlds of
type W2 where both ϕ and ψ are true. Clearly, given two ϕ−worlds u and
v , u < v if and only if u is of type W1 and v is of type W2. By definition,
exhmw(ϕ) consists of the minimal ϕ−worlds relative to <, that is, of all the
W1 worlds. That is, exhmw(ϕ) = ϕ ∧¬ψ.

Next, let us see what we get with exhie. We look at all the maximal con-
sistent sets that contain ϕ and the negations of some alternatives. In this
simple case, there is just one such set, namely {ϕ,¬ψ}. Trivially, ¬ψ thus
belongs to every MC-set as defined above, and so ψ is innocently excludable.
As a result, we have exhie(ϕ) = ϕ ∧¬ψ— that is, the two operators deliver
the same results, unsurprisingly.

2.2.2 Disjunction without a conjunctive alternative

We now consider a sentence of the form A or B (with A and B logically
independent), and assume that the alternatives for this sentence are just
ALT = {A,B}. This is one case where the three operators, exhkrifka, exhmw
and exhie deliver different results. It is easy to see that exhkrifka returns the
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contradiction. And while exhmw returns the exclusive reading of A or B, exhie
turns out to be vacuous.

First let’s compute exhmw(A or B) relative to ALT={A,B}. The worlds
that make A or B true can be divided into three types: W1−worlds where
A is true and B is false, W2−worlds where A is false and B is true, and
W3−worlds where both A and B are true. Now, for any worlds w1, w2,
w3 of type, respectively, W1, W2 and W3, we have w1 < w3, w2 < w3,
and crucially neither w1 < w2 nor w2 < w1. So the minimal worlds in
A ∨ B are the worlds of type W1 and W2. Therefore, exhmw(A or B) is the
union of W1−worlds and W2−worlds, namely the proposition equivalent to
(A∧¬B)∨ (¬A∧ B)— that is, the exclusive reading.

Let us now compute exhie(A or B). There are two maximal consistent sets
consisting of A∨B and negations of alternatives: {A∨B,¬B} and {A∨B,¬A}.
These sets are maximal because the set {A∨ B,¬A,¬B} is not consistent. So
there are two MC-sets, and their intersection is just {A∨ B}. It follows that
no alternative is innocently excludable. As a result, nothing gets excluded,
and we have exhie(A or B) = A∨ B (i.e., exhaustification is vacuous).

In fact, most theories of alternatives assume that that the alternatives for
A or B also include A∧ B, in which case, as we discuss in the next section,
both exhmw and exhie return the exclusive reading. A more interesting case,
as discussed in Fox 2007, is when a disjunction occurs in the scope of a
possibility modal, which we represent with ♦(A∨ B). If only the disjunction
contributes to alternatives and we compute alternatives based on Sauerland’s
procedure, the alternative set is {♦A,♦B,♦(A∨B),♦(A∧B)}. Crucially, this set
is not closed under conjunction, because none of its members is equivalent
to ♦A ∧ ♦B. As discussed in Fox 2007, relative to this set of alternatives,
exhie returns the proposition ♦(A ∨ B) ∧ ¬♦(A ∧ B) (which is compatible
with ♦A∧♦B), while exhmw returns ♦(A∨ B)∧¬(♦A∧♦B), which is strictly
stronger.

As mentioned in the introduction, one of the results proven in this paper
(Result 6 above, more formally stated in Theorem 12 below) is that, in certain
cases, applying exhie relative to Sauerland’s alternatives is equivalent to
applying exhmw with respect to a more restricted set of alternatives. The
case we have just discussed illustrates that this result has a limited scope,
as it is simply not relevant to sentences where a disjunction occurs in the
scope of some other operator. Note, however, that when a disjunction is
embedded under a necessity modal, the resulting alternative set based on,
say, Sauerland’s procedure, happens to be closed under conjunction, and
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so exhmw and exhie are again equivalent, thanks to Result 3 above (stated
as Theorem 9 below). This is so because, under Sauerland’s procedure, the
alternatives for �(A∨ B) are {�(A∨ B),�A,�B,�(A∧ B)}, and �(A∧ B) is
equivalent to �A∧�B.

2.2.3 Disjunction with a conjunctive alternative

Now let us consider again a disjunctive sentence A or B, but with an alter-
native set ALT={A,B,A∧ B}. It turns out that the relationship denoted by <
is in fact the same as before. In worlds of type W1 as defined above, there
is just one true alternative, namely A. In worlds of type W2, B is the only
true alternative. And in worlds of type W3, all the alternatives are true. So
as before, for any worlds w1, w2, w3 of type, respectively, W1, W2 and W3,
we have w1 < w3, w2 < w3, and crucially neither w1 < w2 nor w2 < w1.
So the result of applying exhmw is the same as before, namely it returns the
exclusive construal of A or B.

However, things change with exhie. Now the MC-sets all include one
additional element, namely ¬(A∧ B). That is, we still have two MC-sets, but
they now are {A∨B,¬A,¬(A∧B)} and {A∨B,¬B,¬(A∧B)}. Since ¬(A∧B)
belongs to both, A ∧ B is innocently excludable, and as a result exhie(A or
B) = (A∨B)∧¬(A∧B). So now both exhaustivity operators return the same
results.

3 Results to be proven

3.1 Note about the notion of closure of a set of propositions under dis-
junction and/or conjunction

I view propositions as sets of worlds, and so, as noticed in section 2.1, when
I talk about negation, conjunction, and disjunction, I mean to talk about
the set-theoretic operations of complementation, intersection, and union.
I can thus talk of the grand disjunction or grand conjunction of infinitely-
many propositions. With this in mind, it is worth noticing that there are
two possible notions of ‘closure under disjunction/conjunction/disjunction
and conjunction’. First there is a finitary notion, where the closure under,
say, disjunction, of a set of propositions E is the set of propositions that is
obtained by applying disjunction recursively to two propositions. That is,
we start with a set E, we then expand this set by adding all the disjunctions
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of pairs of members of E, and we then do the same thing with the resulting
set, which yields a new set, ad infinitum. But I will use here a stronger notion
of closure, where, at each step, we add all the propositions that you get
by taking the disjunction of an arbitrary subset of propositions (including
infinite sets). This is necessary in order for some of the results I will report
to be fully general, that is, to hold even in cases where the alternative set is
infinite. Let me make this precise.

Definition 5. Closure of a set of propositions under conjunction and disjunc-
tion.
Let E be a set of propositions. The closure of E under disjunction and con-
junction, noted E∨∧, is defined recursively as follows:

1. First we posit E0 = E.

2. Then we define En+1= {ϕ : there exists a subset X of En such that
ϕ =

∨
X or ϕ =

∧
X}.

3. E∨∧ = {ϕ : for some i, ϕ ∈ Ei}.

The definition of the closure under disjunction alone of a set E, noted E∨

(resp. conjunction, noted E∧), is straightforward. One just needs to replace
the second clause with:
En+1= {ϕ : there exists a subset X of En such that ϕ =

∨
X (resp. ϕ =

∧
X)}.

Note that E∨∧ could as well be defined as the smallest set of propositions
that contains E and is closed under ∨ and ∧, where a set X is closed under ∨
(resp. ∧) if, for any subset Y of X,

∨
Y ∈ X.

3.2 The relationship between the three operators exhkrifka, exhmw and
exhie

Proposition 1. For any proposition ϕ and any alternative set ALT:

if exhkrifka(ALT, ϕ) is not the contradiction,
then exhkrifka(ALT, ϕ) = exhmw (ALT, ϕ) = exhie(ALT, ϕ).

Corollary 2. For any proposition ϕ and any alternative set ALT:

exhkrifka(ALT, ϕ) entails both exhmw (ALT, ϕ) and exhie(ALT, ϕ).
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3.3 Some facts about exhmw

Proposition 3. For any proposition ϕ and any alternative set ALT:

exhmw (ALT, ϕ) = exhmw (ALT∨∧, ϕ).

In other terms, closing ALT under disjunction and conjunction is vacuous for
exhmw .

Corollary 4. For every ϕ and every ALT,

exhmw (ALT∨, ϕ) = exhmw (ALT∧, ϕ) = exhmw (ALT, ϕ).

That is, closure under disjunction alone, or conjunction alone, is vacuous for
exhmw .

Corollary 5. For any proposition ϕ and two sets ALT1 and ALT2,

if ALT∨∧1 = ALT∨∧2 or ALT∨1 = ALT∨2 or ALT∧1 = ALT∧2 ,
exhmw (ALT1, ϕ) = exhmw (ALT2, ϕ).

That is, if one can find a set whose closure under conjunction, or disjunction,
or both, is the same as that of ALT, one can use this set instead of ALT with
no change of output for exhmw .

3.4 The relationship between exhmwand exhie

Proposition 6. For any proposition ϕ with alternatives ALT: exhmw(ALT,ϕ)
entails exhie(ALT,ϕ).

Proposition 7. For any ALT, any a ∈ ALT, and any proposition ϕ, a is
innocently excludable given ALT and ϕ if and only if exhmw(ALT,ϕ) entails
¬a.

Corollary 8. exhie(ALT, ϕ) = ϕ ∧
∧
{¬a : a ∈ ALT ∧ exhmw (ALT, ϕ) ⊆ ¬a}

3.5 Closure under conjunction of alternatives makes exhmw and exhie
equivalent

The most important result I will report is that two operators deliver the same
result when the alternatives are closed under conjunction, where a set ALT
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is said to be closed under conjunction if ALT=ALT∧ (equivalently: if for any
subset X of ALT, ∧(X) ∈ ALT).5

Theorem 9. For any ϕ and any ALT, if ALT is closed under conjunction, then

exhmw(ALT,ϕ) = exhie(ALT,ϕ).

3.6 Some consequences

While it is not generally true that closing alternatives under disjunction and
conjunction is vacuous for exhie (in contrast with exhmw ), a weaker result
holds for exhie: closing the alternatives under disjunction (but crucially not
conjunction) is vacuous for exhie.

Theorem 10. For any proposition ϕ and any alternative set ALT,

exhie(ALT,ϕ) = exhie(ALT∨,ϕ).

From 9 and 10, the following result follows: if the closure of ALT under
disjunction is closed under conjunction, applying exhmw and exhie give rise
to equivalent results.

Corollary 11. For any proposition ϕ and any alternative set ALT:

if ALT∨ = ALT∨∧, exhmw(ALT,ϕ) = exhie(ALT,ϕ).

3.7 Sauerland’s alternatives

The final result is specifically relevant to Sauerland’s (2004) procedure for
generating alternatives. In general, the alternatives of a sentence, as defined
by this procedure, are not closed under conjunction, and so Theorem 9 is not
relevant. Nevertheless, for a significant subset of cases, Theorem 12 ensures
that the result of applying exhie relative to the full set of alternatives is the
same as that of exhmw relative to a much smaller set of alternatives. Let us

5 In this case, there is no similar result if we restrict ourselves to a finitary notion of closure.
Let us say that a set ALT is finitely closed under conjunction if for any finite subset X of ALT,
∧(X) is in ALT. This is not sufficient in general to guarantee that exhie(ALT, ϕ)=exhmw (ALT,
ϕ). Of course, when there are finitely-many alternatives (which is most often the case), this
distinction is irrelevant since generalized closure under conjunction and finitary closure are
equivalent.
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first define Sauerland’s procedure for generating alternatives and then state
the result.

Definition 6. Sauerland’s alternatives.6

Let E be a set of sentences that do not themselves contain alternative-inducing
expressions (we call such sentences elementary and treat them as atomic
sentences of a propositional language), and let S be a sentence obtained by
combining members of E with disjunction and conjunction.

The set of Sauerland-alternatives of S, noted ALTsauerland(S), is the set of
sentences that can be obtained by all possible substitutions of occurrences
of ∨ or ∧ in S with a member in {∨, L, R,∧}, where L and R are the Boolean
operators such that ‘x L y ’ is equivalent to x and ‘x R y ’ is equivalent to y .7

Theorem 12. Let S be a sentence obtained from a set of elementary sentences
E by combining them with disjunction and conjunction.

Then exhie(ALTsauerland(S), S) = exhmw (E, S).

Importantly, the theorem is restricted to sentences where disjunctions and
conjunctions are not under the scope of some other operator, and which
contain no other alternative-inducing expression. However, there are cases
which are not covered by Theorem 12 but where it is nevertheless also the
case that the outcome of exhie relative to the alternatives that result from
Sauerland’s procedure is the same as that of exhmw with respect to a smaller
set of alternatives. I simply do not attempt here a full characterization
of the configurations in which this is the case, but one can use the other
results reported here to establish this equivalence on a case-by-case basis. For
instance, as already mentioned in 2.2.2, configurations in which a disjunction
is embedded under a necessity modal give rise to a set of alternatives that is
closed under conjunction, so that Theorem 9 is applicable.

6 Alternatives are now defined as sentences of a propositional language, rather than proposi-
tions. However, when I use a symbol standing for a set of alternatives as one of the arguments
of exhie or exhmw , this symbol is then meant to denote the set of propositions that the
alternatives express.

7 These substitutions do not have to be uniform: a given occurrence of ∨ can be replaced
with, say, L, while some other occurrence of ∨ is replaced with, say, ∧, and of course a given
occurrence can also be left unchanged, that is, ‘replaced’ with itself — so that any sentence is
an alternative of itself.
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4 Practical relevance: some examples

In this section, I will often omit the ALT argument of exhie and exhmw .

4.1 Cases involving disjunction and conjunction

Consider again the case of a disjunctive sentence S of the form A or B
or C. If we follow Spector (2003, 2006), the alternatives for this sentence
consist of the closure under disjunction and conjunction of {A, B, C}, that
is, include 18 semantically distinct alternatives.8 If we apply Sauerland’s
2004 scale for disjunction and conjunction, we have 16 syntactically distinct
alternative, and 13 semantically distinct alternatives.9 In the first case, since
the set of alternatives is closed under conjunction, we can conclude from
Theorem 9 that applying exhie is equivalent to applying exhmw , and then
from Proposition 3 that applying exhmw relative to the full set of alternatives,
is equivalent to applying exhmw relative to just {A, B, C}.10 As a result of
these two equivalences, we know that applying exhie relative to the full set of
alternatives is equivalent to applying exhmw relative to just three alternatives.
The same result holds if we use Sauerland’s scale, given Theorem 12.

It follows that to compute the result of exhie, it is sufficient to apply
exhmw relative to alternatives {A, B, C}. One can straightforwardly see that
the minimal worlds that make S true are those in which only one member of
{A,B,C} is true, i.e., that the exhaustified meaning is equivalent to (A∧(¬B∧
¬C))∨ (B∧ (¬A∧¬C))∨ (C∧ (¬A∧¬B)). In contrast with this, if one wants
to directly compute the result of exhie, one has to consider all alternatives
and construct all the MC-sets, on the basis of 16 or 18 alternatives, which is
significantly more time- and ink-consuming.

8 As noted in Mascarenhas (2014), the closure under disjunction and conjunction of n in-
dependent propositions contains D(n) − 2 propositions, where D(n) is the nth so-called
Dedekind’s number (Wikipedia 2016).

9 If a the sentence contains n connectives and no other alternative-inducing expression, the
number of syntactically distinct alternatives on the basis of Sauerland’s scale is 4n, where n
is the number of connectives occurring in the sentence.
Furthermore, if each atom occurs only once in such a sentence, the number of semantically
distinct alternatives based on Sauerland’s scale is equal to 3n+1−1

2 (see the Appendix for a
proof).

10 Importantly, the counterpart of Proposition 3 for exhie is false, as we have already seen:
for A or B, exhie is vacuous relative to alternatives {A ∨ B,A, B}, but not relative to {A ∨
B,A, B,A∧ B}. And in the case of A or B or C, relative to the alternative set {A,B,C}, exhie is
vacuous as well.
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Let me consider another example. Mascarenhas (2014) discusses sentences
such as Either Mary came, or both Peter and Sue did, which I will schematize
asm∨(p∧s). Mascarenhas adopts Katzir’s (2007) theory of alternatives, and
observes that if one applies something close to Sauerland’s (2004) pragmatic
procedure on the basis of these alternatives, the predicted pragmatically
strengthened meaning is (m∧¬p∧¬s)∨(p∧s∧¬m)— as already discussed
in Spector 2003. Proving this result directly, though not difficult, is not
completely straightforward either, because the alternative set is big and so
there are complex logical relationships between the various alternatives and
the sentence whose strengthened meaning is computed. And applying exhie
directly to such a sentence (instead of running the neo-Gricean procedure
as formalized by Sauerland) is not straightforward either, because again
the high number of alternatives, and their complex logical relationships,
make the computation of innocent exclusion far from trivial. Now, if one
uses Sauerland’s alternatives, we know thanks to Theorem 12 that the result
of exhie will be the same as that of exhmw relative to just {m, p, s}. It is
easy to see that the worlds that make the sentence true and at the same
time minimize the set of true alternatives in {m,p, s} are those in which
only m is true and those in which p and s are true and m is false. So it is
now straightforward to see that the strengthened meaning of the sentence
is (m ∧ ¬p ∧ ¬s) ∨ (p ∧ s ∧ ¬m). A similar simplification is available on
the basis of Katzir’s theory of alternatives (which is the one adopted by
Mascarenhas). Mascarenhas shows that the alternatives as defined by Katzir
for the relevant sentence (henceforth the Katzir-alternatives, ALTkatzir) are all
the members of the closure under disjunction and conjunction of {m,p, s}
except (m∧p)∨ (p∧ s)∨ (m∧ s). But this missing alternative itself belongs
to the closure of the Katzir-alternatives under disjunction. That is, we have:
(ALTkatzir)∨ = {m, p, s}∨∧. Now, by Theorem 10, applying exhie relative to
ALTkatzir is the same as applying it relative to (ALTkatzir)∨, hence relative to
{m, p, s}∨∧. By Theorem 9, applying exhie relative to {m, p, s}∨∧ is the same
as applying exhmw relative to {m, p, s}∨∧. By Proposition 3, this is in turn
equivalent to applying exhmw relative to just {m, p, s}.

If we now consider a more complex sentence, such as, say, Mary or Sue
came, or both Peter and Jane did, which we can schematize as (m∨ s)∨ (p∧
j), the number of syntactically distinct alternatives based on Sauerland’s
scale is 64, corresponding to 40 semantically distinct alternatives, and the
computation of innocent exclusion becomes intractable unless one finds a
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way of simplifying the problem.11 The results mentioned in this note provide
such a tool. Thanks to Theorem 12, we know that applying exhie relative to
the full set of alternatives is equivalent to applying exhmw relative to just
{m,s,p, j}. Using exhmw , it is easy to see that the result is (m∧¬s ∧¬p ∧
¬j)∨ (s ∧¬m∧¬p ∧¬j)∨ (p ∧ j ∧¬m∧¬s).

For an even more complex sentence, based on five elementary disjuncts
or conjuncts, the number of syntactically distinct alternatives based on
Sauerland’s scale becomes 256, corresponding to 121 semantically distinct
alternatives.12 But again, we can be sure that applying exhie relative to the
full set of alternatives is equivalent to applying exhmw relative to just five
alternatives.13

Let us sum up these observations in a somewhat more abstract form.
In the cases we have just discussed, ALT contained a much smaller subset
ALT* such that exhie(ALT, ϕ) = exhmw (ALT*, ϕ). This is what allowed us to
compute the output of exhie by considering only a small set of alternatives. It
is important to note that we did not generally have exhie(ALT,ϕ) = exhie(ALT*,
ϕ). So, even if we adopt a theory based on exhie, it turns out that in a number
of cases the fastest way to compute the outcome of the operator is to use
exhmw as a shortcut, thanks to which the set of alternatives that need to be
considered can be drastically shrunk.

11 This is even more so if, following Spector 2003, we assume that the alternatives are the
closure under disjunction and conjunction of {m, s, p, j}, which contains 166 semantically
distinct members.

12 On the view that alternatives are obtained by closing the set of atomic sentences occurring
in the sentence under disjunction and conjunction, the number of alternatives is D(5)− 2 =
7579. With 6 propositions serving as disjuncts or conjuncts, the number of alternatives is
truly enormous: D(6)− 2 = 7828352.

On the basis of Sauerland’s alternatives, with 6 propositions serving as disjuncts or
conjuncts (and occurring only once), there are 1024 syntactically distinct alternatives (45,
5 being the number of connectives in the sentence), corresponding to 364 semantically
distinct alternatives ( 3

5+1−1
2 ). Yet again, whatever choice we make, we can work with just 6

alternatives.
13 All this remains true if instead of using Sauerland’s procedure for computing alternatives,

we take as our set of alternatives the closure under disjunction and conjunction of the
elementary propositions the relevant sentence is made of, as in Spector 2003. Given Theorem
9, we know that applying exhie to the sentence relative to this set of alternatives (which is
closed under conjunction) is equivalent to applying exhmw , and then Proposition 3 tells us
that we will get the same outcome by applying exhmw relative to a set of alternatives that
contains only the elementary propositions.
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4.2 A case with infinitely-many alternatives

Irrespective of whether alternatives are closed under conjunction, it is always
true that exhmw (ϕ) entails exhie(ϕ). So, suppose we can show that exhmw (ϕ)
= ϕ. It then follows that ϕ entails exhie(ϕ). But since exhie(ϕ) entails ϕ (by
definition), we get exhie(ϕ) = ϕ. In other words, if exhmw is vacuous, so is
exhie. This can be useful when proving that exhmw is vacuous is easier than
proving directly that exhie is.

Now, in recent works about the semantics of expressions such as at least
n, it is shown that the ‘ignorance inference’ triggered by a sentence such
as there are at least 1037 stars, that is, the inference that the speaker is
uncertain about the exact number of stars, follows if the alternatives for such
a sentence are all the sentences of the form there are at least n stars and
there are exactly n stars (Büring 2008, Schwarz 2013, 2016 — see also Spector
2006, which discusses a similar account for modified numerals of the form
more than n, and Mayr 2011 for a related proposal).

One aspect of this type account is that the exhaustification of such a
sentence relative to such alternatives is vacuous. This is not necessarily
straightforward to prove with exhie— Schwarz’s (2013) proof takes about
one page, and Mayr needs about two pages to work out the output of exhie
relative to a different set of alternatives. But note that, even if our official
theory is based on exhie, it is sufficient to prove that exhmw (ϕ) = ϕ, which
turns out to be quite easy. One just needs to show that every world that
makes ϕ true is minimal relative to <ALT . That is, for any two ϕ−worlds u
and v , we have neither u <ALT v nor v <ALT u.

Let us schematize the set of alternatives as ALT = {= n : n is an integer}
∪ {≥ n : n is an integer}, where = n stands for there are exactly n stars and
≥ n for there are at least n stars. Note that this set of alternatives is not
closed under conjunction. This is so because

∧
({≥ n : n is an integer}) is the

proposition stating that there are infinitely-many stars, which is not already
included in ALT, and there is no reason not to consider worlds/models in
which this proposition is true.14 So we don’t know in advance that exhmw and

14 If we assume that there is no world with infinitely-many stars, the set of alternatives becomes
closed under conjunction if one adds to it the contradictory proposition. Now, adding the
contradiction to a set of alternatives is always a vacuous move, for both exhie and exhmw .
The contradiction is always trivially innocently excludable. Adding the contradiction has
no effect either on <ALT , since the contradiction is false in every world. Given Theorem 9,
then, if we only consider worlds with finitely many stars, exhie and exhmw deliver the same
outcome for the sentence under discussion.
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exhie are equivalent in this case. Now, every world making the sentence true
is either a world in which there are exactly n stars, for some n ≥ 1037, or a
world in which there are infinitely-many stars. Consider two worlds un and
um in which, respectively, there are exactly n stars and there are exactly m
stars, with n ≠ m, n ≥ 1037 and m ≥ 1037. It is clear that we don’t have
un < um: the alternative = n is true in un but not in um. Symmetrically,
it is not the case that um < un. Now let w be a world in which there are
infinitely-many stars. Again, neither un < w nor w < un. The alternative = n
is true in un but not in w. And the alternative ≥ (n+ 1) is true in w but not
in un. Finally, for any two worlds u, v such that either the number of stars
is the same in both or there are infinitely-many stars in both, u and v make
true exactly the same alternatives, and so we have neither u < v nor v < u.
So for any two worlds u, v that make ϕ true, we have neither u < v nor
v < u. Therefore all ϕ−worlds are minimal and exhmw (ϕ) = ϕ, from which
it follows that exhie(ϕ) =ϕ.

5 Proofs

5.1 The relationship between three operators exhkrifka, exhmw and exhie.

Proposition 1. For any proposition ϕ and any alternative set ALT:

if exhkrifka(ALT, ϕ) is not the contradiction,
then exhkrifka(ALT, ϕ) = exhmw (ALT, ϕ) = exhie(ALT, ϕ).

Proof. Assume that exhkrifka(ALT, ϕ) is not the contradiction.

1. Let us prove that exhkrifka(ALT, ϕ)=exhie(ALT, ϕ). Since exhkrifka(ALT,
ϕ) is not the contradiction, the set X = {ϕ}∪{¬a : a ∈ ALT ∧ϕ does
not entail a} is consistent, that is, is (ALT,ϕ)-compatible. Furthermore,
any (ALT, ϕ)-compatible set is a subset of X, and therefore X is the
only maximal (ALT, ϕ)-compatible set, and so we have IEALT,ϕ = X. We
then have:
exhie(ALT, ϕ) =

∧
IEALT,ϕ =

∧
X= exhkrifka(ALT, ϕ).

2. Let us now show that exhkrifka(ALT, ϕ)=exhmw (ALT, ϕ).
For any world u, let us define FA(u) = {a : a ∈ ALT ∧a(u) = 0}.
Note that for any two ϕ−worlds u and v , i) u ≤ALT v if and only if
FA(v) ⊆ FA(u) and ii) u <ALT v if and only if FA(v) ⊊ FA(u).
Now, since exhkrifka(ALT,ϕ) is consistent, there are worlds u that make
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it true, and we have, for every such world u, FA(u) = {a : a ∈ ALT ∧ϕ
does not entail a}. For any ϕ−world v , the members of ALT that v
makes false cannot be entailed by ϕ. In other words, for any ϕ−world
v , FA(v) ⊆ FA(u), i.e., u ≤ v . So v can be a minimalϕ−world relative
to <ALT if and only if it makes true the same alternatives as u (so that
we don’t have u <ALT v), i.e., iff exhkrifka(ALT, ϕ)(v) = 1. Therefore,
exhkrifka(ALT, ϕ) = exhmw (ALT, ϕ).

Corollary 2. For any proposition ϕ and any alternative set ALT:

exhkrifka(ALT, ϕ) entails both exhmw (ALT, ϕ) and exhie(ALT, ϕ)

Proof. If exhkrifka(ALT, ϕ) is contradictory, it entails every proposition, hence
entails exhmw (ALT, ϕ) and exhie(ALT, ϕ). If not, then by Proposition 1,
exhkrifka(ALT, ϕ), exhmw (ALT, ϕ) and exhie(ALT, ϕ) are equivalent.

5.2 Some facts about exhmw

Proposition 3. For any proposition ϕ and any alternative set ALT:

exhmw (ALT, ϕ) = exhmw (ALT∨∧, ϕ).

In other terms, closing ALT under disjunction and conjunction is vacuous for
exhmw .

Proof. Given the definition of exhmw , it is sufficient to show that the two
strict preorders <ALT and <ALT∨∧ are identical, i.e., that their corresponding
non-strict preorders ≤ALT and ≤ALT∨∧ are identical. The right-to-left direction
is trivial: if u ≤ALT∨∧ v , then since ALT ⊆ ALT∨∧, u ≤ALT v .

The left-to-right direction requires an inductive proof. Consider the fol-
lowing property P of propositions, defined as follows:

P(ϕ)a for any two worlds u and v such that u ≤ALT v , if ϕ(u) = 1,
then ϕ(v) = 1.

We will prove by induction that P holds of every member of ALT∨∧.

1. Base case: P holds of every member of ALT by definition of ≤ALT .

2. Induction hypothesis: P holds of every member of ALTn.

3. Inductive step: Let ϕ be a member of ALTn+1. Then there exists X
⊆ ALTn such that ϕ =

∨
X or ϕ =

∧
X. Suppose that u ≤ALT v and
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that ϕ(u) = 1. If ϕ =
∨
X with X ⊆ ALTn there is a member x of

X such that x(u) = 1. Since P holds of x (induction hypothesis),
x(v) = 1, and therefore (

∨
X)(v) = 1, i.e., ϕ(v) = 1. If ϕ =

∧
X with

X ⊆ ALTn , every member x in X is such that x(u) = 1, and by the
induction hypothesis every x in X is such that x(v) = 1. Therefore
(
∧
X)(v) = 1, i.e., ϕ(v) = 1. So property P holds of ϕ.

4. Conclusion: for every n, P holds of every member of ALTn.

5. Furthermore, any member of ALT∨∧ is a member of ALTi, for some i,
and therefore P holds of every member of ALT∨∧.

So, whenever u ≤ALT v , every member of ALT∨∧ which is true in u is true in
v , i.e., u ≤ALT∨∧ v . That is, u ≤ALT v entails u ≤ALT∨∧ v .

Corollary 4. For every ϕ and every ALT,

exhmw (ALT∨, ϕ) = exhmw (ALT∧, ϕ) = exhmw (ALT, ϕ).

(That is, closure under disjunction alone, or conjunction alone, is vacuous
for exhmw )

Proof. Straightforward from Proposition 3 and the fact that ALT∨
∨∧ = ALT∨∧

and ALT∧
∨∧ = ALT∨∧.

Corollary 5 follows straightforwardly from Proposition 3 and Corollary 4.

Corollary 5. For any proposition ϕ and two sets ALT1 and ALT2,

if ALT∨∧1 = ALT∨∧2 or ALT∨1 = ALT∨2 or ALT∧1 = ALT∧2 ,
exhmw (ALT1, ϕ) = exhmw (ALT2, ϕ).

5.3 The relationship between exhmw and exhie

Despite the fact that the definitions of the two operators look very different,
they are in fact closely related. The key point, expressed in Lemma 2, is that
minimality in terms of <ALT is closely related to the notion of MCALT,ϕ−set.
First let me remind the reader of some standard terminological points.

Definitions 7.

1. A world u satisfies a set of propositions X if and only if umakes every
member of X true.
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2. A proposition ϕ is consistent with a set of propositions X if and only
if there is a world that satisfies X ∪ {ϕ}.

3. A proposition ϕ is entailed by a set of propositions X if and only if
every world that satisfies X makes ϕ true.

Before proving the core lemma (Lemma 2), we first prove the following
lemma.

Lemma 1.

1. Definition.
Given a proposition ϕ, a world u that ϕ makes true, and a set of alter-
natives ALT, we define: XALT,ϕ(u) = {ϕ} ∪ {¬a : a ∈ ALT ∧a(u) = 0}.
In what follows, I will omit the subscripts ALT and ϕ and will simply
write X(u).

2. Fact.
For any world u:
u is a minimal ϕ−world relative to <ALT a X(u) is an MC(ALT ,ϕ)−set.

Proof. First, note the following equivalence.

For any two ϕ−worlds u and v : u <ALT va X(v) ⊊ X(u).

1. Left-to-right: u is a minimal ϕ−world relative to <ALT ⇒ X(u) is an
MC(ALT ,ϕ)−set.
Let u be a minimal ϕ−world relative to <ALT . X(u) is consistent (it is
satisfied by u) and is therefore (ALT,ϕ)−compatible. Suppose X(u)
were not a maximal (ALT,ϕ)−compatible set. Then there would be
a member of ALT, call it a, such that a) ¬a ∉ X(u) and b) X(u) ∪
{¬a} is consistent. So there would be a world w satisfying X(u) ∪
{¬a}. This world w would be a ϕ−world. Furthermore, since X(w)
includes ϕ and all the negations of alternatives that w makes false,
we would have X(u)∪ {¬a} ⊆ X(w), hence X(u) ⊊ X(w). Given the
above equivalence, we would have w <ALT u, which contradicts the
assumption that u is a minimal ϕ−world relative to <ALT .

2. Right-to-left: X(u) is an MC(ALT ,ϕ)−set ⇒ u is a minimal ϕ−world
relative to <ALT .
Let u be such that X(u) is an MC(ALT ,ϕ)−set. Suppose u were not
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a minimal ϕ−world relative to <ALT . Then for some ϕ−world w,
we would have w <ALT u, i.e., given the above equivalence, X(u) ⊊
X(w). But since X(w) is consistent (w satisfies X(w)), X(w) would
be (ALT,ϕ)−compatible and therefore X(u) itself would not be a
maximal (ALT,ϕ)−compatible set, contrary to the assumption that
X(u) is an MC(ALT ,ϕ)−set.

It is now straightforward to prove the following core lemma.

Lemma 2. For every proposition ϕ, every set of alternatives ALT, and every
world u, exhmw(ALT,ϕ)(u) = 1 if and only if there is an MC(ALT ,ϕ)−set X
that u satisfies.
Equivalently: u is a minimal ϕ−world relative to <ALT if and only if there is
an MC(ALT ,ϕ)−set X that u satisfies.

Proof.

1. From left to right.
Let u be a minimal ϕ−world relative to <ALT . By Lemma 1, X(u) is an
MC(ALT ,ϕ)−set X that u satisfies.

2. From right to left.
Let u be a world that satisfies a certain MC(ALT ,ϕ)−set X. By def-
inition, X(u) is the maximal (ALT,ϕ)−compatible set that u sat-
isfies. It follows that X ⊆ X(u). But since X is itself a maximal
(ALT,ϕ)−compatible set, necessarily we have X = X(u). So X(u)
is an MC(ALT ,ϕ)−set, and so by Lemma 1, u is a minimal ϕ−world
relative to <ALT .

The core lemma can itself be reformulated as follows:

Lemma 3. For every proposition ϕ and every set of alternatives ALT,

exhmw (ALT, ϕ) = {u : u satisfies at least one MC(ALT ,ϕ)−set}.
Equivalently:

exhmw (ALT, ϕ)=
∨
{
∧
X : X is an MC(ALT ,ϕ)−set}

A number of facts straightforwardly follow, such as Propositions 6 and 7.

Proposition 6. For any proposition ϕ with alternatives ALT: exhmw(ϕ) en-
tails exhie(ALT,ϕ).

11:23



Benjamin Spector

Proof. Let u be a world that makes exhmw (ALT, ϕ) true. By Lemma 3, u
satisfies some MC(ALT ,ϕ)−set, hence u satisfies the intersection of all the
MC(ALT ,ϕ)−sets, and therefore entails the negation of all innocently excludable
alternatives.

Proposition 7. For any ALT, any a ∈ ALT, and any proposition ϕ, a is
innocently excludable given ALT and ϕ if and only if exhmw(ALT,ϕ) entails
¬a..

Proof. Let ALT be a set of propositions, a a member of ALT and ϕ proposi-
tion.

1. Left to right. Assume a is innocently excludable given ALT and
ϕ. Then ¬a belongs to every MC(ALT ,ϕ)−set (by definition). Given
Lemma 2, every world u that makes exhmw (ALT, ϕ) true satisfies one
MC(ALT ,ϕ)−set, hence makes ¬a true.

2. Right to left. Assume that exhmw (ALT, ϕ) entails ¬a. Given Lemma
3, exhmw (ALT, ϕ) is the set of worlds that satisfy at least one
MC(ALT ,ϕ)−set. So for every MC(ALT ,ϕ)−set X, every world that satisfies
X belongs to exhmw (ALT,ϕ) and thus makes ¬a true. But then ¬a has
to be consistent with every MC(ALT ,ϕ)−set. Since MC(ALT ,ϕ)−sets are
maximal (ALT, ϕ)-compatible sets and a belongs to ALT, ¬a belongs
to every MC(ALT ,ϕ)−set. So ¬a ∈ IE(ALT ,ϕ).

Corollary 8. exhie(ALT, ϕ) = ϕ ∧
∧
{¬a : a ∈ ALT ∧ exhmw (ALT, ϕ) ⊆ ¬a}

Note that the reason why exhmw (ALT, ϕ) may be strictly stronger than
exhie(ALT, ϕ) is that exhmw (ALT, ϕ) sometimes does more than excluding
some alternatives (while what exhie does is enriching the proposition it
applies to with the negation of some alternatives). Thus take A∨ B, relative
to ALT={A,B}. We have exhie(ALT, A ∨ B) = A ∨ B, but exhmw (ALT, A ∨ B)
= (A ∨ B) ∧ ¬(A ∧ B). The point here is that even though A ∧ B is not an
alternative, it is ‘excluded’ when we apply exhmw , but not when we apply
exhie.

5.4 Closure under conjunction of alternatives makes exhmw and exhie
equivalent

The central result of this paper is the following. It relies on the Lemma 2.
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Theorem 9. For any ϕ and any ALT, if ALT is closed under conjunction, then

exhmw (ALT, ϕ) = exhie(ALT, ϕ).

Proof. Let ALT be a set of propositions closed under conjunction and ϕ be a
proposition. Since exhmw (ALT,ϕ) always entails exhie(ALT,ϕ) (by Proposition
6), it is sufficient to prove the following:

exhie(ALT, ϕ) entails exhmw (ALT, ϕ)

Equivalently:

For every world u, if exhmw(ALT,ϕ) = 0, then exhie(ALT,ϕ)(u) = 0.

Assume that for some world u, exhmw(ϕ)(u) = 0. We need to prove:
exhie(ϕ)(u) = 0. Now, either ϕ(u) = 0 or ϕ(u) = 1. If ϕ(u) = 0, it is
trivial that we also have exhie(ALT,ϕ)(u) = 0. So we can restrict our atten-
tion to the case where ϕ(u) = 1.

Consider the set A = {a : a ∈ ALT ∧ a(u) = 1}. Since exhmw(ϕ)(u) =
0, by Lemma 2, u doesn’t satisfy any MC(ALT ,ϕ)−set. Therefore, every
MC(ALT ,ϕ)−set contains a member m such that m(u) = 0, and since
ϕ(u) = 1, m is of the form ¬a, where a ∈ ALT and a(u) = 1, i.e., a ∈ A. So
every MC(ALT ,ϕ)−set has a member whose negation is in A. Consider now

∧
A,

the grand conjunction of A. By definition, (
∧
A)(u) = 1. Furthermore, since

every MC(ALT ,ϕ)−set contains a member which is a negation of a member
of A,

∧
A is necessarily false in every world that satisfies an MC(ALT ,ϕ)−set.

That is ¬(
∧
A) is true in every world that satisfies an MC(ALT ,ϕ)−set, hence

is consistent with every MC(ALT ,ϕ)−set. Since MC(ALT ,ϕ)−sets are maximal
(ALT ,ϕ)−compatible sets and

∧
A is an alternative (because ALT is closed

under conjunction), ¬(
∧
A) belongs to every MC(ALT ,ϕ)−set. So

∧
A is in-

nocently excludable. Since (
∧
A)(u) = 1, there is an innocently excludable

alternative, namely
∧
A, which u makes true, i.e., fails to exclude, and

therefore exhie(ϕ) is false in u.15

5.5 Some consequences

We can now prove a second interesting result: closure of alternatives under
disjunction is vacuous even for exhie.

15 My original proof was very similar but slightly more complex, and it relied on the axiom of
choice. Thanks to Emmanuel Chemla for suggesting a more simple version.
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Theorem 10. For any proposition ϕ and any alternative set ALT,

exhie(ALT, ϕ) = exhie(ALT∨, ϕ).

Proof. We will say that a proposition ϕ excludes a proposition a if ϕ entails
¬a.

1. exhmw (ALT∨, ϕ) = exhmw (ALT, ϕ) (by Corollary 4).

2. Let a be a member of ALT∨. Then exhie(ALT∨, ϕ) excludes a if and
only if exhmw (ALT∨, ϕ) does (by Proposition 7).

3. From steps 1 and 2, it follows that exhie(ALT∨, ϕ) excludes a if and
only if exhmw (ALT, ϕ) does.

4. Now either a belongs to ALT, or a does not. Let us assume that
a belongs to ALT. We know by Proposition 7 that exhmw (ALT, ϕ)
excludes a if and only if exhie(ALT, ϕ) does. Given the point we have
just made in step 3, it follows that exhie(ALT∨, ϕ) excludes a if and
only if exhie(ALT, ϕ) does.

5. So the only way in which exhie(ALT∨, ϕ) could be distinct from
exhie(ALT, ϕ) is by excluding a member a of ALT∨ that does not
belong to ALT, and such that ¬a is not already entailed by exhie(ALT,
ϕ).

6. Suppose exhie(ALT∨, ϕ) excludes some proposition a that is in ALT∨

but not in ALT. Note that a is necessarily the disjunction of a subset
of ALT. Call this subset A. Since exhie(ALT∨, ϕ) entails ¬a, it entails
the negation of every member of A, that is, excludes every member
of A. Since every member of A belongs to ALT, it follows from step 4
above that every member of A is also excluded by exhie(ALT, ϕ). Since
the negations of all the members of A jointly entail ¬a, it follows
that exhie(ALT, ϕ) entails ¬a. Therefore every member of ALT∨ that
exhie(ALT∨, ϕ) excludes is already excluded by exhie(ALT, ϕ), even if
this member is not a member of ALT.

7. Therefore, exhie(ALT∨, ϕ) excludes a certain member of ALT∨ if and
only if exhie(ALT, ϕ) does, from which it follows that exhie(ALT∨, ϕ) =
exhie(ALT, ϕ).

The following corollary straightforwardly follows from from 9 and 10:
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Corollary 11. For any proposition ϕ and any alternative set ALT:

if ALT∨ = ALT∨∧, exhmw (ALT, ϕ) = exhie(ALT, ϕ).

5.6 Sauerland’s alternatives

Now, what remains to be proven is that if we use Sauerland’s alternatives and
apply exhie to a sentence obtained by combining elementary propositions
(i.e., propositions that do not themselves include alternative-inducing ex-
pressions) with disjunction and conjunction, the result is equivalent to what
we get by applying exhmw with respect to an alternative set that contains
just the elementary propositions (Theorem 12). If in such cases Sauerland’s
alternatives were closed under conjunction, this would directly follow from
Theorem 9. But Sauerland’s alternatives for such sentences are not in fact
always closed under conjunction, an important observation that I owe to
Bernhard Schwarz (p.c.).16 Consider for instancem∧ (p∨ s). Sentences equiv-
alent, respectively, to s and m∨p, are alternatives by Sauerland’s procedure,
but no sentence equivalent to s ∧ (m ∨ p) is an alternative by Sauerland’s
procedure. The gist of the proof is the following: even though Sauerland’s
alternatives for such sentences are not closed under conjunction, their clo-
sure under disjunction is closed under conjunction. By Theorem 10, we know
that closing the alternatives under disjunction is vacuous for exhie. And since
the result of this is itself closed under disjunction and conjunction, we can
use Theorem 9 and Proposition 3 to show that exhaustifying with exhie is
equivalent to exhaustifying with exhmw with respect to a much smaller set of
alternatives.

Because Sauerland’s alternatives are defined syntactically, I now talk about
sentences of a propositional language, rather than about the propositions
they express. But I also use a sentence name or a variable over sentences to
stand for the proposition that the corresponding sentence expresses. When
I write as if sentences were the arguments of exhie or exhmw operators, I
intend to refer to the propositions they express. Likewise, alternative sets
can be viewed as sets of sentences, but when alternative sets are used as
arguments of exhie or exhmw , they stand for the set of propositions that their
members express. That is, I freely go back and forth between ‘sentence’– talk

16 In a previous version of this paper, I had incorrectly stated that Sauerland’s alternatives
for sentences with unembedded disjunctions and conjunctions are generally closed under
conjunction. Many thanks to Bernhard Schwarz for detecting this mistake.
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and ‘proposition’– talk, and the context should make clear what is meant.
Note that because alternative sets as constructed by Sauerland are finite,
closure under disjunction/conjunction as defined above is equivalent to
finitary closure under disjunction/conjunction.

Fact 1. Every sentence which belongs to the closure under disjunction and
conjunction of a finite set A of atomic sentences is equivalent to a sentence
of the form (p1∧p2∧ . . .∧pk)∨ (pm∧ . . .∧pn)∨ . . .∨ (pr ∧ . . .∧ps), where
all the pis belong to A— let us call sentences of this form positive disjunctive
normal forms based on A, positive DNFs for short.

Proof. A standard proof of the Disjunctive Normal Form theorem shows
how any sentence of propositional logic can be turned into a disjunctive
normal form (DNF) by repeated applications of De Morgan’s laws and of
the distributivity laws for disjunction and conjunction. If one applies this
procedure to a formula in which disjunction and conjunction are the only
occurring logical expressions, De Morgan’s laws are not needed, and the
end-result is a positive DNF.

Fact 2. Let S be a sentence obtained from a set of atomic sentences E by
combining them with disjunction and conjunction. Then every conjunction
of elements of E (i.e., every formula of the form e1∧ . . .∧ en, with {e1, . . . , en}
⊆ E) is equivalent to a sentence that belongs to ALTsauerland(S).

Proof. Let S be a sentence obtained from a set of atomic sentences E by
combining them with disjunction and conjunction (where each member of
E occurs in S). Consider a sentence C = e1 ∧ . . . ∧ en, with {e1, . . . , en} ⊆ E.
Starting from S, we can obtain a sentence equivalent to C by replacing some
connectives in S with one of {L,R,∧}, in the following manner. For any
subconstituent Σ of S of the form x c A, where x is a member of E that does
not occur in C and c is ∨ or ∧, we replace c with the connective R. For any
subconstituent of Σ of the form A c x, where x is a member of E that does
not occur in C and c is ∨ or ∧, we replace c with the connective L. Finally,
we replace all other connectives in S with ∧. The resulting sentence S′ is
equivalent to C , and belongs to ALTsauerland(S) by construction.

Fact 3. Let S be a sentence obtained from a finite set of atomic sentences E
by combining them with disjunction and conjunction. Then (ALTsauerland(S))∨

= E∨∧.
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That is, the closure under disjunction of ALTsauerland(S) is the closure under
disjunction and conjunction of E.

Proof. Let S be a sentence obtained from a finite set of atomic sentences E
by combining them with disjunction and conjunction. Let us call B the set
of all formulae that can be obtained by combining some members E with
conjunction. By Fact 2, B ⊆ ALTsauerland(S). Now, the closure of B under dis-
junction, B∨, contains all the propositions that can be expressed by a positive
DNF based on E (i.e., a DNF with no negation whose atomic propositions are
all in E). By Fact 1, we then know that every member of E∨∧ is equivalent to
a member of B∨. Therefore, at the semantic level (i.e., identifying now our
sets of sentences with the sets of the propositions they express), we have
E∨∧ ⊆ B∨, and since B ⊆ ALTsauerland(S), we also have E∨∧ ⊆ (ALTsauerland(S))∨.
But obviously (still at the semantic level), (ALTsauerland(S))∨ ⊆ E∨∧. Therefore,
(ALTsauerland(S))∨ = E∨∧.

We are now in a position to prove Theorem 12:

Theorem 12. Let S be a sentence obtained from a finite set of atomic sen-
tences E by combining them with disjunction and conjunction.

Then exhie(ALTsauerland(S), S) = exhmw (E, S).

Proof. Let S be a sentence obtained from a finite set of atomic sentences E
by combining them with disjunction and conjunction.

1. By Theorem 10, we have:
exhie(ALTsauerland(S), S) = exhie((ALTsauerland(S))∨, S).
By Fact 3, (ALTsauerland(S))∨ = E∨∧.
Therefore, exhie(ALTsauerland(S), S) = exhie(E∨∧, S).

2. By Theorem 9, exhie(E∨∧, S)=exhmw (E∨∧, S), and therefore by step 1
just above, exhie(ALTsauerland(S), S) = exhmw (E∨∧, S).

3. By Proposition 3, exhmw (E∨∧, S)=exhmw (E, S), and therefore given step
2 just above, exhie(ALTsauerland(S), S)= exhmw (E, S).

6 Conclusion

In this note, I have proven a number of results thanks to which the outcome
of both exhie and exhmw can be systematically compared. The results reported
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here provide the means to reduce, in a number of cases, the set of alternatives
that need to be considered in order to compute the result of exhaustification,
sometimes in a dramatic way. At the very least, these results a) can help
us determine the kind of facts that can allow us to adjudicate between the
two types of exhaustivity operators, and b) are useful from a practical point
of view, since in many cases they allow us to use exhmw as a shortcut for
computing the outcome of exhie.

Now, as discussed in Mascarenhas 2014, the fact that under many theories
sets of alternatives can be huge even for relatively simple sentences raises
an issue of cognitive plausibility. It is tempting to speculate that the results
reported here may help alleviate this issue. The speculation would be that in
many cases, speakers compute exhaustivity effects by considering a small
number of alternatives and apply exhmw , as a way to compute the effect of
exhie relative to a larger set of alternatives. Needless to say, this can be no
more than speculation at this point. Whether or not these speculations are
on the right track, these results are useful in their own right, as they clarify
the logical relationships between two broadly used exhaustivity operators.

Appendix: Counting the number of semantically distinct alternatives
given Sauerland’s definition of alternatives

Fact: Let S be a sentence obtained by combining some atomic sentences with
disjunction and conjunction. If S contains n connectives and if each atomic
sentence occurs only once in S, then the number of semantically distinct
alternatives given Sauerland’s procedure is 3n+1−1

2 .

Proof. In what follows, an ‘alternative of S’ is defined as a member of
ALTsauerland(S) (cf. Definition 6). Let us note α(S) the number of semanti-
cally distinct alternatives of S, that is, the number of propositions that are
expressed by one or several alternatives.
The proof is by induction.

1. Base case: if S contains no connective, the number of alternatives is
just 1, which is equal to 30+1−1

2 .

2. Induction Hypothesis: suppose that for a certain n the claim is true
for every k such that k ≤ n.

3. Let S be a sentence containing n + 1 connectives and at most one
occurrence of each atomic sentence. There exist S1 and S2 such that S
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is S1 c S2 where c = ∨ or c = ∧. Now, let us consider all the alterna-
tives in which c has been replaced with L (and possibly some other
replacements have been performed). Clearly, they are all equivalent
to an alternative of S1 (whatever replacement was done in S2 has no
semantic effect), and each alternative of S1 is equivalent to one of
them. So the number of semantically distinct alternatives they express
is α(S1). Likewise, the alternatives in which c has been replaced with
R express exactly the same propositions as the alternatives of S2,
and therefore the number of semantically distinct alternatives they
express is α(S2). Finally, the alternatives in which c has been kept as
is or has been replaced by ∨ or ∧ are all of the form T1 c T2, where T1
is an alternative of S1 and T2 is an alternative of S2. These alternatives
are all semantically distinct since each atomic sentence in them occurs
only once. The number of alternatives of this sort is α(S1)×α(S2)× 2.
So we have α(S) = α(S1)+α(S2)+2×α(S1)×α(S2). Now let k1 be the
number of connectives in S1, and let k2 be the number of connectives
in S2. The number of connectives in S is k1 + k2 + 1, i.e., we have
n+ 1 = k1 + k2 + 1, i.e., n = k1 + k2. We also have k1 ≤ n and k2 ≤ n.
Therefore, by the induction hypothesis, we know that α(S1) = 3k1+1−1

2

and α(S2) = 3k2+1−1
2 . Therefore,

α(S) = α(S1)+α(S2)+ 2α(S1)α(S2) = 3k1+1−1
2 + 3k2+1−1

2 + 2(3k1+1−1)(3k2+1−1)
4

= 3k1+1−1+3k2+1−1+3k1+k2+2−3k1+1−3k2+1+1
2

= 3k1+k2+2−1
2

= 3(n+1)+1−1
2

The claim thus also holds not only for every k ≤ n (induction hypoth-
esis), but for n+ 1 as well, i.e., for every k ≤ n+ 1.
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