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Abstract A challenge for the semantic and pragmatic analysis of modified

numerals is how to account for ignorance implications about exact quan-

tity. Superlative-modified numerals (at least/most six) systematically give

rise to such implications while their comparative-modified counterparts

(more/fewer than six) do not, but the distribution of ignorance implications

with superlative modifiers is sensitive to how the numeral interacts with

modals and other operators. In this paper, I demonstrate that a “de-Fregean”

semantic analysis of modified and unmodified numerals as second-order

properties of degrees that differ only in the kind of ordering relation they in-

troduce supports a neo-Gricean pragmatic account of ignorance implications

as Quantity implicatures, and derives the pattern of interaction with modals

as a scopal phenomenon.

Keywords: Numerals, implicature, ignorance, free choice, degree quantification

1 Introduction

It is standard procedure on commercial airline flights to provide information
about the safety features of the airline. As part of this demonstration, a flight
attendant might utter a sentence like (1).

∗ I am grateful for inspiring suggestions and thought-provoking criticisms during the long
development of this paper from Peter Alrenga, Adrian Brasoveanu, Elizabeth Coppock,
Michael Franke, Larry Horn, Yaron McNabb, Rick Nouwen, Doris Penka, Jessica Rett, two
anonymous reviewers for Semantics & Pragmatics, and the participants in my Winter 2014
seminar on implicature.

©2015 Christopher Kennedy
This is an open-access article distributed under the terms of a Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/).

http://semprag.org/
http://dx.doi.org/10.3765/sp.8.10
http://http://creativecommons.org/licenses/by/3.0/


Christopher Kennedy

(1) This airplane has six emergency exits.

A passenger on the plane who is paying attention to the safety demonstration
will take the flight attendant to be communicating the information that
the airplane in question has exactly six emergency exits. If the passenger
later discovers that the airplane has five or seven emergency exits, she will
retroactively judge the flight attendant to have been mistaken, which may
influence her attitude towards future flights on the airline; but she would
have no reason based on the flight attendant’s utterance alone to question
his knowledge of the airplane’s safety features.

If the flight attendant not only wants to provide information about emer-
gency exits, but also wants to say something about how the plane compares
to others of a similar type, he might instead make one of the utterances in
(2), possibly prefaced by something to the effect of Unlike other planes of
similar design. . . .

(2) a. This airplane has more than six emergency exits.

b. This airplane has fewer than six emergency exits.

The attentive passenger might wonder why the flight attendant is providing
this extra information, but she would have no reason to doubt the quality of
his knowledge about the airplane.

If, however, the flight attendant were to begin the safety demonstration
with one of the following utterances, the attentive passenger would most
likely look up in alarm:

(3) a. This airplane has at least six emergency exits.

b. This airplane has at most six emergency exits.

The reason for the passenger’s alarm is that in uttering (3a) or (3b), the
flight attendant signals that he does not know what the actual number of
emergency exits is; he merely knows the lower or upper bound. This in turn
raises questions about his overall knowledge of the safety features of the
airplane, and the passenger would not be unjustified in demanding to be let
off the plane.

The challenge for semantic and pragmatic theory is to explain why the
superlative modifiers in (3) imply ignorance about actual quantity, while
the comparative modifiers in (2) do not, given that both sets of modifiers
appear on the surface to be equally uninformative about actual number.
Geurts & Nouwen 2007, in one of the first comprehensive analyses of this

10:2



A “de-Fregean” semantics for modified and unmodified numerals

phenomenon, effectively build this difference into the semantics of the two
kinds of modifiers, arguing that superlative modifiers have an epistemic
component that comparative modifiers lack. Subsequent research has taken
a different strategy, aiming to derive the difference from the interaction of
the meanings of the two classes of modifiers and independent semantic
mechanisms (Nouwen 2010) or pragmatic principles (Büring 2008, Cummins
& Katsos 2010, Coppock & Brochhagen 2013, Schwarz 2013, Rett 2014).

One argument in favor of the latter type of approach is that the absence
vs. presence of ignorance inferences is not a feature specific to more/fewer
than vs. at least/most, but instead supports a quite general classification of
modifiers into two groups, which Nouwen 2010 calls “Class A” and “Class B”
modifiers respectively. Class A modifiers include, in addition to the compara-
tives in (2), the prepositional modifiers over, under and between and ;
Class B modifiers include, in addition to the superlatives in (3), the adverbs
minimally, maximally, the prepositions from, up to, and complex expressions
like or more/fewer. The two classes are internally heterogeneous, with
particular modifiers having slightly different distributional and semantic
properties (see e.g. Nouwen 2008b, Schwarz, Buccola & Hamilton 2012, Rett
2014), but there are two core semantic features that the members of each
class respectively share, and which distinguish one class from the other:

(4) a. Class A modifiers express exclusive (strict) orderings relative to the
modified numeral.

b. Class B modifiers express inclusive (non-strict) orderings relative to
the modified numeral.

The goal of this paper is to argue that it is this distinction in core meaning
that determines the presence vs. absence of ignorance inferences. In line
with the other researchers listed above, I will argue that ignorance inferences
are pragmatic in nature, and arise because Class B modified numerals are
less informative than relevant alternatives. Specifically, I will argue that the
alternatives for a Class B modified numeral are the corresponding Class A
modified numeral and the bare numeral, with the latter analyzed as a gener-
alized quantifier over degrees that introduces “two-sided” truth-conditional
meaning as a matter of semantic content (Kennedy 2013). On this view, (3a–b)
are asymmetrically entailed by (2a–b) (respectively) and (1), so an utterance
of the former implicates that the speaker does not know whether the latter
holds under standard Quantity reasoning, in exactly the same way that, for
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instance, the utterance of a disjunction implicates that the speaker does not
know of either disjunct whether it holds.

The paper is organized as follows. I begin with a discussion of the anal-
ysis of Class A/B modifiers in Nouwen 2010, which is also based on the
core semantic distinction in (4) but derives ignorance implications semanti-
cally rather than pragmatically. Even though I will ultimately conclude that
Nouwen’s analysis is empirically problematic, it is important because it high-
lights several interactions between modified numerals and modals that any
analysis needs to explain. I will then turn to my own proposal, which begins
from the semantic analysis of unmodified numerals defended in Kennedy
2013, which analyzes them as generalized quantifiers over degrees that intro-
duce two-sided truth conditional content. I argue that this semantic analysis
of bare numerals provides the basis for a pragmatic theory in which the
alternatives that are relevant for the calculation of Quantity implicatures of
utterances of sentences containing numerals are just the ones we need in
order to generate ignorance inferences with Class B modifiers but not with
Class A modifiers. I then show how the analysis accounts for the interaction
of modified numerals and modals, with particular attention to cases in which
ignorance implications disappear (Büring’s (2008) “authoritative readings”).

2 Nouwen’s analysis of the Class A/B distinction

2.1 Blocking and rescuing

Nouwen’s account of how the semantic difference between Class A and Class
B modifiers relates to ignorance implications has three parts. The first is
the hypothesis that numerals (both modified and unmodified) saturate a
degree position in the nominal projection which, following Hackl 2000, he
takes to be provided by a parameterized cardinality determiner many. This
determiner comes in two versions: the “weak” version in (5a), which involves
regular existential quantification over plural individuals; and the “strong”
version in (5b) which adds a uniqueness requirement (indicated by “!”).

(5) a. �manyw� = λnλPλQ.∃x[Q(x)∧ P(x)∧ #(x) = n]
b. �manys� = λnλPλQ.∃!x[Q(x)∧ P(x)∧ #(x) = n]

The second part involves a semantic distinction between modified and un-
modified numerals. The latter are singular terms, and denote values in the
range of the measure function “#” encoded by many, which Nouwen (with
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Hackl) assumes to be elements in the domain of degrees (see also Cresswell
1976, Krifka 1989).1 Depending on which version of many is chosen, the result
is either lower-bounded (manyw ) or two-sided (manys) truth conditions, as
illustrated in (6), the two parses of (1).

(6) a. ∃x[have(x)(airplane)∧ exits(x)∧ #(x) = 6]
b. ∃!x[have(x)(airplane)∧ exits(x)∧ #(x) = 6]

Modified numerals, on the other hand, denote generalized quantifiers over
degrees. Nouwen assumes a fairly standard semantics for Class A modifiers,
which builds on work in comparatives: more than and fewer than have the
denotations in (7a–b).

(7) a. �more than� = λmλP〈d,t〉.max{n | P(n)} >m
b. �fewer than� = λmλP〈d,t〉.max{n | P(n)} <m

These denotations give the intuitively correct truth conditions for (2a–b) in
(8a–b): the maximum number of sides that the airplane has is greater than six
and fewer than six, respectively. Here there is no truth conditional difference
here between manyw and manys , so I just give meanings for the former.

(8) a. max{n | ∃x[have(x)(airplane)∧ exits(x)∧ #(x) = n]} > 6
b. max{n | ∃x[have(x)(airplane)∧ exits(x)∧ #(x) = n]} < 6

For the Class B modifiers, Nouwen proposes the meaning in (9a) for lower-
bound modifiers like at least, and the one in (9b) for upper-bound modifiers
like at most.

(9) a. �at least� = λmλP〈d,t〉.min{n | P(n)} =m
b. �at most� = λmλP〈d,t〉.max{n | P(n)} =m

These denotations give the truth conditions in (10a–b) for (3a–b), respectively.
For the lower-bound Class B modifiers, it is now crucial that we parse the
sentence using manys , because manyw returns contradictory truth conditions
for any numeral greater than one.

1 Note that # is not, strictly speaking, a cardinality function, but rather gives a measure of the
size of the (plural) individual argument of the noun in “natural units” based on the sense
of the noun (Krifka 1989, Salmon 1997). If this object is formed entirely of atoms, then #
returns a value that is equivalent to a cardinality. But if this object contains parts of atoms,
then # returns an appropriate fractional or decimal measure. For the purpose of this paper,
we can assume that the range of # has at least the structure of the real numbers (Fox & Hackl
2007).
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(10) a. min{n | ∃x![have(x)(airplane)∧ exits(x)∧ #(x) = n]} = 6
b. max{n | ∃x[have(x)(airplane)∧ exits(x)∧ #(x) = n]} = 6

Both (10a) and (10b) introduce two-sided truth conditions: the former requires
the minimum unique plurality of airplane exits to be exactly six; the latter
requires the maximum unique plurality of airplane exits to be exactly six.
Observing that these truth conditions are equivalent to what we get from
corresponding, simpler, bare numeral constructions on their manys parses,
Nouwen proposes that principles of blocking rule them out as possible
meanings for (3a–b).

However, there is a way of modifying (10a–b) to derive interpretations for
(3a–b) that are distinct from the bare numeral meanings, which is the third
part of Nouwen’s account of the ignorance implications associated with Class
B modifiers. Nouwen proposes that a silent epistemic possibility modal can
be inserted into sentences like those in (3). If the modified numeral takes
scope over the modal, we get the truth conditions in (11a–b), which differ
crucially from those in (10a–b) in that the sets that are the inputs to the min
and max operators are no longer singletons.

(11) a. min{n | �∃x![have(x)(airplane)∧ exits(x)∧ #(x) = n]} = 6
b. max{n | �∃x[have(x)(airplane)∧ exits(x)∧ #(x) = n]} = 6

The formula in (11a) says that the minimum number in the set of unique
numbers n such that there is an epistemically accessible world in which the
airplane has n emergency exits is six; that in (11b) says that the maximum
such number is six. When there is uncertainty about quantity, these sets will
contain more than one number, since uncertainty entails the existence of
epistemically accessible worlds in which the airplane has a different number
of emergency exits. The contribution of the modifiers in such a situation is
to express lower and upper bounds, respectively, on the relevant sets, and
the result is exactly the uncertainty implications that we wanted to derive.

2.2 Two problems with modals

Although Nouwen’s analysis succeeds in deriving the uncertainty implications
of Class B modifiers, it faces a number of empirical challenges. Some of
these have already been discussed in the literature (see Schwarz, Buccola &
Hamilton 2012); here I want to focus on two problems involving the interaction
of Class B modified numerals and modals that raise further challenges which,
I believe, point to the need for a new account of the Class A/B distinction.
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2.2.1 Class B modifiers and deontic modals

The first problem with modals is noted by Nouwen himself: the analysis
appears to make incorrect predictions about the truth conditions of sentences
in which Class B modified numerals are embedded under deontic modals.
Nouwen focuses on the case of (12), which is predicted to have the two
interpretations shown in (12a–b), depending on whether the numeral takes
scope below or above the modal. (In the examples to follow, I use “⊗” to
indicate a reading whose unavailability can be explained in Nouwen’s account
by blocking, and “*” to indicate a reading whose unavailability cannot be so
explained.)

(12) You are required to register for at least three classes.

a. ⊗ �[min{n | ∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3]
b. * min{n | �∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3

On the narrow scope numeral interpretation, (12) is predicted to be true
just in case every deontically accessible world is one in which the minimum
unique number of classes registered for is three, which entails registration in
no more and no fewer than three classes. The sentence in (12) clearly does not
have such an interpretation, though the corresponding bare numeral sentence
does (You are required to register for three courses), so the absence of this
reading could be explained in terms of blocking. The problem is that the
truth conditions associated with the wide scope numeral interpretation are
identical: (12b) says that three is the minimum n such that in every deontically
accessible world there is registration in a unique number of classes equal
to n, which again entails registration in no more and no fewer than three
classes. So this reading should be blocked as well, and the sentence should
be unacceptable.

Of course, (12) is perfectly acceptable, and its truth conditions are clear:
registration in one or two (or zero) classes is not allowed; registration in
three is a must; registration in more than three is an option. Moreover, there
need be no speaker ignorance: (12) can be understood as an “authoritative”
statement about course enrollment requirements, to use the terminology of
Büring 2008. As Nouwen observes, this meaning is represented by the formula
in (13), in which the numeral scopes over an existential modal operator.

(13) min{n | ♦∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3

10:7



Christopher Kennedy

Nouwen does not provide an explanation for how or why this shift from
universal to existential modal force occurs, or why there is not another
reading in which the modified numeral scopes below the modal (which would
give the wrong truth conditions), though he notes that it appears to be
a systematic feature of universal modal statements expressing minimum
requirements (cf. von Fintel & Iatridou 2007), showing up also in relative
clause structures like (14).

(14) The minimum number of classes that you need to register for is three.

The analysis that I will present in Section 3.2 will derive the correct meanings
for these sentences without invoking blocking effects or necessitating a
change in modal force.

Nouwen focuses mainly on the interaction of minimizing Class B modi-
fiers with universal modals, but when we look at the full range of possibili-
ties — pitting modal force against maximality/minimality — we see that the
problems go beyond the examples just considered. Consider first the interac-
tion of maximizing modifiers and universal modals. The following example
is predicted to have the two readings in (15a–b) depending on whether the
numeral scopes below or above the modal, neither of which are correct.

(15) You are required to register for at most three classes.

a. ⊗ �[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3]
b. * max{n | �[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} = 3

The formula in (15a) says that every deontically accessible world is such that
there is a maximum of three courses registered for. If three is the maximum
in every world, then there are no worlds with registration in one or two
classes, and no worlds with registration in four or more classes; that is, there
is registration in exactly three courses in all worlds. This is not a reading of
(15), but Nouwen could again appeal to blocking here; (15b), however, presents
a bigger problem. This logical representation says that three is the maximum
n such that in every world, there is registration for at least n classes. This
disallows registration in one or two classes, and allows registration in three
or more classes; in other words, this is precisely the meaning that we failed
to derive without modal shifting for (15)! It is, moreover, one of the meanings
associated with the corresponding bare numeral sentence, namely the lower-
bounded one (Geurts 2006), but it is not a possible meaning of (15).

In fact, (15) is ambiguous, but neither reading is captured by (15a–b). One
reading forbids enrollment in four or more classes, and does not introduce a
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speaker ignorance implication; this is Büring’s (2008) authoritative reading.
The second reading is weaker, and includes an ignorance implication: reg-
istration in one to three classes is required, but the speaker does not know
which, and registration in four or more classes is not ruled out; this is what
Büring 2008 calls the “speaker insecurity” reading. This latter reading can
be derived in Nouwen’s analysis by inserting an existential epistemic modal
between the numeral and the deontic modal, but it is not clear how to capture
the authoritative reading.

Next consider minimizing Class B modifiers and existential root modals.
The following sentence should have the readings represented in (16a–b).

(16) You are allowed to register for at least three classes.

a. ⊗ ♦[min{n | ∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3]
b. * min{n | ♦[∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} = 3

The formula in (16a) says that there is a deontically accessible world with
registration in exactly three classes. This is a possible understanding of
(16), but it is also one of the meanings assigned to the corresponding bare
numeral sentence, and so (on Nouwen’s account) it should be blocked. The
one in (16b) says that three is the minimum n such that there is a deontically
accessible world with exactly n registered-for classes. This allows for worlds
with registration in more than three classes, but it rules out worlds with
registration in one or two classes. The expectation, then, is that (16) should
have the meaning that we wanted to derive for (12). This is actually not
surprising, given Nouwen’s suggestion that the universal modal force is
converted to existential modal force in that example, but it is a problem for
the analysis of (16), since it cannot be understood in this way.

Finally, consider the interaction of existential modals and maximizing
Class B modifiers.

(17) You are allowed to register for at most three classes.

a. ⊗ ♦[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} = 3]
b. max{n | ♦[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} = 3

If the numeral scopes below the modal, as in (17a), the predicted meaning is
that registration in exactly three courses is allowed. This is a weak meaning,
because it does not rule out registration in four or more courses (or in one
or two courses). It does not appear to be a possible reading of (17), which
explicitly puts an upper bound on the number of registered-for courses,
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though it is a meaning of the corresponding bare numeral sentence, so
Nouwen can appeal to blocking here.

If the numeral scopes above the modal, as in (17b), the truth conditions
state that three is the maximal n such that there is a deontically accessible
world with registration in n classes. This is precisely what (17) means, so
it appears that Nouwen’s analysis derives the correct result for this case.
However, it is also the case that the bare numeral sentence (18) can be used
to convey precisely the same information, that is, that registration in more
than three courses is not allowed:

(18) You are allowed to register for three classes.

Why, then, is there no blocking effect here? Nouwen points out that, given
his assumptions about bare numerals, this meaning is only derivable by
implicature, and assumes that only truth-conditional content is relevant for
triggering blocking effects. The formulas in (19a–b) show the truth conditions
that Nouwen predicts for (18), which differ in whether the propositional
argument of the modal has a one-sided (manyw ) or two-sided (manys) under-
standing of the numeral construction.

(19) a. ♦[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]
b. ♦[∃!x[reg(x)(you)∧ classes(x)∧ #(x) = n]]

The formula in (19b) is equivalent to (17a), simply entailing the existence of
a world with registration in exactly three classes, but not ruling out worlds
with registration in other numbers of classes. The one in (19a) is even weaker,
since we only know that registration in some number of classes of at least
size three is acceptable. But precisely because both readings are so weak,
they can be pragmatically strengthened by a Quantity implicature of the sort
in (20).

(20) ∀n > 3¬[♦[∃(!)x[reg(x)(you)∧ classes(x)∧ #(x) = n]]]

Adding (20) to the semantic content of (18) (on either interpretation) derives
a meaning that is equivalent to (17b), but since (20) is an implicature, this (by
hypothesis) does not block (17b).

That said, if we had reason to believe that the content in (20) were part
of the truth conditions of (18), then presumably we would expect blocking
here, and Nouwen’s account of the meaning and acceptability of (17) would
no longer be tenable. In Section 3.1, I will present such evidence, and provide
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a semantic analysis of unmodified numerals that derives upper-bounded
readings compositionally. If this analysis is correct, then Nouwen’s account
of (17) cannot be maintained.

2.2.2 Class B modifiers and epistemic modals

I now turn to interactions with overt epistemic modals, which are not dis-
cussed by Nouwen and which contrast in a significant way with the covert
epistemic modals that are so crucial to the derivation of ignorance implica-
tions. First consider the following two examples, which contain minimizing
and maximizing Class B modifiers, respectively.

(21) a. Chicago has at least 200 distinct neighborhoods.

b. Chicago has at most 3,000,000 residents.

As expected, these sentences are acceptable only if there is some uncertainty
about the exact number of neighborhoods in Chicago, and about the exact
population in Chicago; when uncertainty is eliminated, the sentences are
infelicitous:

(22) #Thanks to the detailed information provided in this census report, I
know precisely how many distinct neighborhoods Chicago has, and
its exact population: it has at least 200 distinct neighborhoods, and it
has at most 3,000,000 residents.

Recall from the discussion in Section 2 that Nouwen derives the un-
certainty inferences in (21) by scoping the modified numeral over an un-
pronounced epistemic possibility modal, which is itself inserted into the
structure to bypass the blocking effect that would otherwise arise from the
truth-conditional equivalence between the non-modalized versions of (21a–b)
and the corresponding sentences with bare numerals. This account of the
uncertainty inference would seem to predict that variants of (21) with overt
epistemic modals, such as (23a–b), should have parallel meanings.

(23) a. Chicago might have at least 200 distinct neighborhoods.

b. Chicago might have at most 3,000,000 residents.

But this is not the case: (23a–b) are not synonymous with (21a–b), and in par-
ticular, they lack interpretations in which the modified numeral takes scope
over the modal. (23a–b) can only be understood to say that it is epistemically
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possible that the minimum number of Chicago neighborhoods is 200 and that
it is epistemically possible that its maximum population is 3,000,000; these
sentences cannot be understood to make the stronger claims associated with
(21a–b) which rule out epistemically accessible worlds in which Chicago has
fewer than 200 distinct neighborhoods or more than 3,000,000 residents.

In fact, the absence of a wide-scope interpretation for the modified
numeral in these examples is expected: previous work on degree quan-
tifiers — expressions of type 〈〈d, t〉, t〉, which includes the class of modi-
fied numerals in Nouwen’s analysis — has shown that they may take scope
higher than root modals but not higher than epistemic modals (Heim 2000,
Schwarzschild & Wilkinson 2002, Büring 2007, Krasikova 2010, Alrenga &
Kennedy 2014). This is illustrated by the following pair of examples, which
involve the negative differential degree quantifier no:

(24) a. Kim can jump no higher than Lee.

b. Kim might jump no higher than Lee.

The sentence in (24a) has a reading in which it asserts that Kim lacks the
ability to jump higher than Lee (and implicates that Kim can jump at least
as high as Lee). Alrenga & Kennedy 2014 show that this reading arises when
no takes scope over the ability modal, deriving the truth conditions stated
informally in (25).

(25) {d | ♦[Kim jumps d-higher than Lee in w]} = �

When the relevant accessibility relation is based on Kim’s abilities, this
derives the observed interpretation of (24a). What is important for us here
is that (24b) does not have a corresponding wide-scope meaning for no.
Such a meaning would say that the set of degrees d such that there is an
epistemically accessible world in which Kim jumps d-higher than Lee is
empty, which is another way of saying that there is no evidence that Kim
jumped higher than Lee. But (24b) merely says that there is evidence that
Kim’s jump will not be higher than Lee’s, which is a much weaker claim, and
is precisely the one that we get when no stays within the scope of the modal:

(26) ♦[{d | Kim jumps d-higher than Lee in w} = �]

If it is generally the case that degree quantifiers cannot take scope over
epistemic modals, then the missing readings of (23) are expected. On the
other hand, if it is generally the case that degree quantifiers cannot take scope
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over epistemic modals, then Nouwen’s account of uncertainty inferences with
Class B modifiers faces a serious challenge, since it rests on the idea that
precisely such a scopal configuration is created in order to avoid a blocking
effect and generate the observed interpretations of sentences like the ones
in (21a–b). Indeed, to derive the actual meanings of (23a–b), Nouwen must
assume that in addition to the overt modal, a second, silent modal is inserted
below the scope of the modified numeral, as shown in (27a–b).

(27) a. ♦[min{n | ♦[∃!x[have(x)(chi)∧neighborhoods(x)∧#(x) = n]]} =
200]

b. ♦[max{n | ♦[∃!x[have(x)(chi) ∧ residents(x) ∧ #(x) = n]]} =
3,000,000]

In the absence of the silent modal, the truth conditions for (23a–b) would
be identical to corresponding sentences with bare numerals, for the reasons
described above, and so should be blocked.

There are various ways that Nouwen could respond to this challenge. Per-
haps “last resort” insertion of a silent epistemic modal does not interact with
whatever constraint blocks wide scope of a degree quantifier relative to an
existential modal. Or perhaps the observed readings are not compositionally
derived in the first place, but rather involve some sort of pragmatic mapping
from the compositionally-derived content (which is ruled out by blocking) to
the observed meaning. On the other hand, if an alternative analysis avoids
these complications entirely, that would certainly be a point in its favor. I
now turn to such an analysis.

3 A “de-Fregean” semantics for modified and unmodified numerals

In this section, I present an alternative account of the properties of Class
A/B modified numerals, which is designed to account for both ignorance
implications with Class B modifiers and for the interactions with modals that
we examined in Section 2.2. The central thesis is that all numerals — modified
and unmodified alike — have essentially the same core meanings: they denote
second order properties of degrees, differing only in the kinds of orderings
they introduce. In Section 3.1, I present my account of unmodified numerals,
and then extend the analysis to modified numerals in Section 3.2. I argue
that the uncertainty implications of Class B modifiers arise as implicatures
because they are less informative than either Class A modified numerals or
unmodified numerals, and I show that this analysis avoids the problems with
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modals that Nouwen’s account runs into, deriving the correct meanings for
the various scopal possibilities.

3.1 Unmodified numerals

For many years, the standard view about the relation between sentence
meaning and speaker meaning in assertions involving numerals was the one
expressed in the following quote from Horn 1972:

Numbers, then, or rather sentences containing them, assert
lower boundedness — at least n — and given tokens of utter-
ances containing cardinal numbers may, depending on the
context, implicate upper boundedness — at most n — so that
the number may be interpreted as denoting an exact quantity.

(Horn 1972, p. 33)

Although this view is still encountered in the literature and in introductory
semantics and pragmatics courses, a range of studies have appeared since
Horn 1972 in both the theoretical and experimental literature (some by Horn
himself) which provide compelling evidence that the two-sided “exactly”
understanding of sentences containing numerals is a matter of semantic
content, rather than implicature (see e.g. Sadock 1984, Koenig 1991, Horn
1992, Scharten 1997, Carston 1998, Krifka 1998, Noveck 2001, Papafragou &
Musolino 2003, Bultinck 2005, Geurts 2006, Breheny 2008, Kennedy 2013).

The most straightforward way to implement a two-sided semantics for
sentences with numerals is to bite the bullet and analyze numerals as quan-
tificational determiners with two-sided meanings, as in (28a) (Koenig 1991,
Breheny 2008), or as determiners that are ambiguous between the two-sided
meaning in (28a) and the lower-bounded meaning in (28b) (Geurts 2006).

(28) a. �three� = λP〈e,t〉λQ〈e,t〉. |P ∩Q| = 3
b. �three� = λP〈e,t〉λQ〈e,t〉. |P ∩Q| ≥ 3

A second way is to adopt the assumptions that I outlined in the previous
section: treat bare numerals as singular terms denoting numbers (objects of
type d), and assume two versions of Hackl’s (2000) parameterized cardinal-
ity determiner, manys and manyw , which differ in whether they introduce
simple existential quantification over individuals or existential quantification
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plus uniqueness. Composition of a numeral with the former derives lower-
bounded semantic content; composition with the latter derives two-sided
semantic content.

In Kennedy 2013, however, I develop an alternative analysis of two-sided
content which is based on the hypothesis that unmodified numerals, just
like modified numerals in Nouwen’s (2010) analysis, can denote second order
properties of degrees. Specifically, I propose that unmodified numerals have
type 〈〈d, t〉, t〉 generalized quantifier denotations of the sort shown in (29).

(29) �three� = λD〈d,t〉.max{n | D(n)} = 3

The numeral three, on this analysis, is true of a property of degrees if
the maximum number that satisfies the property is three. This analysis
is inspired by the treatment of numerals as second order properties of
individuals considered in Frege 1980 [1884], in which for instance three is
true of a property of individuals just in case the number of individuals that
the property is true of is three (cf. Scharten 1997), and so I refer to it as a
“de-Fregean” semantics for numerals. The central compositional difference
between the two accounts is that I treat bare numerals as members of the
class of degree expressions and numbers as degrees, and so am able to make
full use of all the principles and assumptions of degree syntax and semantics
that have been established in work on comparatives, modified numerals and
other degree constructions.

In particular, as in Nouwen’s analysis, I assume that numerals saturate
a degree position in the nominal projection, which could be introduced
by Hackl’s manyw (we no longer need manys , as we will shortly see), by a
silent or deleted adjectival version of many (cf. Landman 2003, 2004), or by
the noun itself (Cresswell 1976, Krifka 1989). For present purposes, these
distinctions do not matter, so I will adopt the Cresswell/Krifka approach
for simplicity, and assume that the nominal and verb combine via Chung
& Ladusaw’s (2004) Restrict rule, with the individual argument of the noun
bound by existential closure. The result is that a sentence like (30a) has the
truth conditions in (30b) when three is interpreted as a de-Fregean quantifier.

(30) a. Kim took three classes.

b. max{n | ∃x[took(x)(kim)∧ classes(x)∧ #(x) = n]} = 3

According to (30b), (30a) is true just in case the maximal n such that Kim
took at least n classes is equal to three, which is false if she took two and
false if she took four. These are the two-sided truth conditions.
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One of the main advantages of the de-Fregean analysis, in addition to
deriving two-sided meanings semantically, is that it explains a pattern of
scalar readings first (to my knowledge) observed by Scharten 1997, and
illustrated very clearly in experimental work by Musolino 2004. Specifically,
although two-sided readings are the default for simple sentences like (30a),
one-sided (lower- and upper-bounded) readings appear in a systematic and
predictable way when numerals are embedded under (root) modals: lower-
bounded readings appear when a numeral is embedded under a universal
modal, and upper-bounded readings emerge when a numeral is embedded
under an existential modal. The examples in (31) and (32) illustrate the pattern.

(31) a. In Britain, you have to be 17 to drive a motorbike and 18 to drive a
car.

b. Mary needs three As to get into Oxford.

c. Goofy said that the Troll needs to put two hoops on the pole in
order to win the coin.

d. You must provide three letters of recommendation.

e. You are required to take three classes per quarter.

(32) a. She can have 2000 calories a day without putting on weight.

b. You may have half the cake.

c. Pink panther said the horse could knock down two obstacles and
still win the blue ribbon.

d. You are permitted to take three cards.

e. You are allowed to enroll in three classes per quarter.

The de-Fregean analysis derives this pattern as a scopal interaction between
numerals and modals. (For independent arguments that bare numerals must
be able to take scope separately from the nominals with which they compose
in the surface form, see Kennedy & Stanley 2009.)

Consider first the case of universal modals. The sentence in (33) can be
interpreted either with the number word inside the scope of the modal,
deriving the proposition in (33a), or with the modal inside the scope of the
number word, deriving the proposition in (33b).

(33) Kim is required to take three classes.

a. �[max{n | ∃x[take(x)(kim)∧ classes(x)∧ #(x) = n]} = 3]
b. max{n | �[∃x[take(x)(kim)∧ classes(x)∧ #(x) = n]]} = 3
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The proposition in (33a) is true just in case every deontically accessible world
is such that the maximum number of classes taken by Kim in that world is
three. This is the two-sided reading. The proposition in (33b) is true just in
case the maximum number n, such that in every deontically accessible world
there is a plurality of classes of at least size n taken by Kim, is three. This
entails that the minimum number of deontically acceptable classes is three,
which is the lower bounded meaning.

In the case of a sentence with an existential modal like (34), we get
exactly the same scopal relations, but the resulting truth conditions are quite
different:

(34) Kim is allowed to take three classes.

a. ♦[max{n | ∃x[take(x)(kim)∧ classes(x)∧ #(x) = n]} = 3]
b. max{n | ♦[∃x[take(x)(kim)∧ classes(x)∧ #(x) = n]]} = 3

The proposition in (34a) is the “weak” reading of (34), which merely says
that there is a deontically accessible world in which the maximum number of
classes taken by Kim is three. The one in (34b), on the other hand, says that
the maximum n such that there is a deontically acceptable world in which
Kim takes at least n classes is three. On this reading, the sentence is false if
there is a deontically accessible world in which Kim takes more than three
classes. This is the “strong” reading of (34), and the fact that it is derived
compositionally, rather than via a scalar implicature, represents one of the
central empirical differences between the de-Fregean analysis and all other
approaches to number word meaning, in which such readings can only be
derived via implicature.

We have already seen that an analysis of two-sided readings in terms of
manys cannot derive upper-bounded readings in examples like (34) semanti-
cally, because embedding a manys proposition under an existential modal,
as in (35a), only derives the weak reading of (34). Similarly, embedding a
Breheny-style two-sided quantificational determiner under the modal, as in
(35b), derives only the weak reading.

(35) a. ♦[∃!x[take(x)(kim)∧ classes(x)∧ #(x) = n]]
b. ♦[|λx.classes(x)∩ λx.take(x)(kim)| = 3]

Of course, both of these meanings can be straightforwardly strengthened
to produce the strong reading by adding a scalar implicature to the effect
that there is no world w such that the number of classes in w is exactly n,
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for all n greater than three; so the crucial question is whether the upper-
bounded reading can be retained in environments in which scalar implicatures
disappear. If the answer is yes, then we know that it must be derived as a
matter of semantic content, and we have evidence in support of the de-
Fregean analysis over the existing alternatives.

Such evidence is discussed in Kennedy 2013. To set up the example,
consider a scenario involving three different groups of taxpayers who can be
distinguished according to how many exemptions they are allowed to claim on
their tax returns, where the minimum number allowed by law is zero and the
maximum number allowed by law is four. Group A contains individuals who
are not allowed to claim any exceptions at all; Group B contains individuals
who are not allowed to claim more than two exemptions; and Group C
contains individuals who are allowed to claim all four exemptions. The
society in which these individuals live is exemption-maximizing but law-
abiding, so everyone in Group A claims zero exemptions, everyone in Group
B claims exactly two exemptions, and everyone in group C claims exactly four
exemptions. Now consider the following utterances as descriptions of this
situation:

(36) a. No individual who was allowed to claim two exemptions claimed
four.

b. No individual who was allowed to claim some exemptions claimed
four.

The sentence in (36a) has a reading in which it is true in this scenario,
because the quantifier restriction is understood to pick out individuals who
were allowed to claim two exemptions, and not allowed to claim more than
two exemptions; that is, the ones in Group B. This is an upper-bounded
reading, but it occurs in a downward-entailing context (and in the argument
of a logical operator), which is a context in which scalar implicatures are
suppressed. And indeed, (36b), in which the number word is replaced by the
scalar quantifier some, is false in this situation, because the quantifier is un-
derstood to range over all individuals who were allowed to claim exemptions,
which includes the ones in Group C. Unless only is inserted or some is pro-
nounced with strong phonological prominence, neither of which is necessary
in (36a), this sentence does not have a reading in which the restriction ranges
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over individuals who were not allowed to claim all exemptions, which would
exclude the individuals in Group C and make it true.2

Before turning to the analysis of modified numerals, let me say a few
words about the relation between the de-Fregean quantificational meaning
of a number word and the singular term meaning. For the purposes of this
paper, it would be fine to assume that an unmodified numeral like three has
only the de-Fregean denotation in (29), since this is the meaning that will play
a role in accounting for the patterns of interpretations that we find with Class
A and Class B modified numerals. However, even though there is good reason
to believe that the two-sided truth conditions that this meaning introduces
are both a matter of semantic content and also a strong default, examples
like the following show that there is still reason to think that lower-bounded,
one-sided meanings are available as well:

(37) a. Kim took three classes, if not four.

b. No one who misses three questions on the exam will receive a
drivers license.

If the first part of (37a) had only the two-sided interpretation in (30b), then the
continuation in the second part should sound strange (Horn 1972). Similarly,
the domain of the quantifier in (37b) is most naturally understood to be
those people who miss at least three questions on the exam. These examples
appear to directly contradict the hypothesis that numerals introduce two-
sided truth-conditional content.

In fact, there is a way to derive one-sided content for these examples,
even if the de-Fregean meaning of a numeral is basic, as I have proposed. A
singular term meaning for the numeral can be derived from the de-Fregean
meaning by successive application of Partee’s (1987) BE and iota operations,
defined in (38).

(38) a. BE = λQ〈〈α,t〉,t〉λxα.Q(λyα.y = x)
b. iota = λP〈α,t〉.ιxα[P(x)]

2 The contrast in (36) also argues in favor of the de-Fregean analysis over an exhaustivity-based
account of two-sided readings of bare numerals, since the latter view would predict parallel
behavior of numerals and other scalar terms. In fact, numerals systematically differ from
other scalar terms in retaining two-sided (“exhaustified”) meanings in contexts that tend to
suppress scalar implicatures, such as the downward-entailing environment in (36) (see e.g.
Koenig 1991, Horn 1992, Marty, Chemla & Spector 2013, Kennedy 2013).
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BE maps a generalized quantifier to the property that is true of all the
singletons in the denotation of the quantifier. Application of BE to the de-
Fregean denotation of three derives the property of being a number equal to
three, as shown by the following derivation:

(39) BE(three)

= [λQλm.Q(λp.p =m)](λP.max{n | P(n)} = 3)
= [λm.[λP.max{n | P(n)} = 3](λp.p =m)] (λ-conversion)

= λm.max{n | [λp.p =m](n)} = 3 (λ-conversion)

= λm.max{n | n =m} = 3 (λ-conversion)

= λm.m = 3 (substitution of equivalents)

Application of iota to the result returns the unique number equal to three,
which is of course three itself.3 And given the possibility of lowering three to a
singular term meaning, we now predict a systematic ambiguity for numerals.
In the case of (37a), for example, the de-Fregean meaning derives the two-
sided interpretation in (40a), and the type-lowered singular term meaning
gives the one-sided, lower-bounded truth conditions in (40b).

(40) Kim took three classes.

a. max{n | ∃x[took(x)(kim)∧ classes(x)∧ #(x) = n]} = 3
b. ∃x[took(x)(kim)∧ classes(x)∧ #(x) = 3]

It might seem counterintuitive to assume that it is the de-Fregean, quan-
tificational meaning of the numeral that is basic, rather than the simpler
singular term denotation, but there are a few reasons to think that this is
correct. First, from a purely theoretical perspective, the latter can be derived
from the former using Partee’s type-shifting principles, but the former can-
not be so derived from the latter. Instead, it can only be derived through
the addition of some meaning changing operation, such as exhaustification.

3 In fact, if the grammar includes an operation like Chung & Ladusaw’s Restrict, as I have
assumed, then we don’t actually need to map the de-Fregean meaning to a singular term in
order to derive the one-sided interpretation of (37a); the 〈d, t〉 meaning in (39) is enough.
Composition of this meaning with the type 〈d, 〈e, t〉〉 noun (or implicit cardinality predicate)
meaning plus existential closure over the degree argument derives (i), which is equivalent to
(40b).

(i) ∃x∃n[took(x)(kim)∧ classes(x)∧ #(x) = n∧n = 3]
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Second, the evidence that has been presented both in traditional linguistic
investigations and in experimental and developmental work over the past
twenty or so years overwhelmingly favors the view that the default inter-
pretation of simple sentences with bare numerals is the two-sided one, with
the one-sided meaning arising only in special contexts (Koenig 1991, Horn
1992, Scharten 1997, Musolino 2004, Bultinck 2005, Geurts 2006, Hurewitz
et al. 2007, Huang, Spelke & Snedeker 2013, Marty, Chemla & Spector 2013,
Kennedy 2013). Finally, as we will see in the next section, the hypothesis that
the basic meaning of an unmodified numeral is the two-sided, de-Fregean
one plays a crucial role in the pragmatic analysis of ignorance implications
with modified numerals.

3.2 Modified numerals

With this account of unmodified numerals in hand, we can now turn to the
analysis of modified numerals, and the explanation for the patterns of data
discussed in Section 2. For Class A modifiers like more than and fewer than,
I will assume with Nouwen 2010 that they combine with the singular term
denotation of a numeral to give back a generalized quantifier over degrees
with a comparative meaning, as in (41).

(41) a. �more than� = λnλP〈d,t〉.max{n | P(n)} > n
b. �fewer than� = λnλP〈d,t〉.max{n | P(n)} < n

For Class B modifiers, it is probably already obvious that I will need to
provide them with denotations that are distinct from those proposed by
Nouwen, because my de-Fregean semantics of unmodified numerals is identi-
cal to Nouwen’s semantics for modified numerals with Class B maximizing
modifiers like at most. This is arguably a good result, since one of the chal-
lenges for Nouwen’s analysis derived from the fact that at most three ended
up producing meanings that were identical to the meanings of sentences
containing bare three. As we saw, Nouwen used this result to invoke blocking
principles and last-resort modalized interpretations to explain the properties
of sentences containing at most three, but this approach led to the problems
with modals that we saw in Section 2.2. Instead, I will propose that Class B
modifiers are just like Class A modifiers except that they introduce partial
orderings rather than total orderings:
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(42) a. �at least� = λmλP〈d,t〉.max{n | P(n)} ≥m
b. �at most� = λmλP〈d,t〉.max{n | P(n)} ≤m

In fact, exactly this analysis of Class B modifiers is considered by Nouwen
himself, but rejected as inadequate. (It is also used by Büring 2008, though
only as a placeholder for the alternatives-based account that he eventually
settles on.) I will explain and respond to Nouwen’s criticisms presently; first,
I will show how this semantic analysis of modified numerals, together with
the semantics for bare numerals presented in the previous section, supports
a pragmatic account of the facts we considered in Section 2.

4 A neo-Gricean pragmatics for modified numerals

4.1 Ignorance implicatures

My account of the ignorance implications associated with Class B modifiers
is essentially the same as the pragmatic accounts proposed by Büring 2008
and Cummins & Katsos 2010: they arise as conversational implicatures from
the utterance of a sentence whose semantic content is less informative than
potential alternatives. In particular, they arise from reasoning involving the
Maxim of Quantity, whereby the utterance of a weaker alternative indicates
that the speaker does not know whether the stronger alternatives hold. (See
also Rett 2014, who develops a pragmatic analysis that combines Quantity
and Manner reasoning.) Where my analysis moves beyond those of Büring
and Cummins & Katsos is in providing a concrete account, rooted in a general
semantics for number words, of what the alternatives to Class B modified
numerals are, and why.

Let me first lay out my general assumptions about how ignorance implica-
tures are generated. I will adopt the model of quantity implicature calculation
presented in Sauerland 2004 (cf. Horn 1972, Gazdar 1977), though other
options would work just as well, including the “grammatical” analyses in
Chierchia 2004, 2006, Fox 2007 and Chierchia, Fox & Spector 2012 among oth-
ers, or the game-theoretic analysis developed in Franke 2011. In Sauerland’s
system, the set of “primary” implicatures associated with an utterance of a
particular sentence φ is the set defined in (43), where K is an (impersonal)
epistemic certainty predicate, and alt(φ) are the alternatives of φ, about
which I will say more below.

(43) {¬K(ψ) | ψ ∈ alt(φ)∧ψ ⇒ φ∧φ 6⇒ ψ}
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Primary implicatures are propositions of the form ‘It is not known that
ψ’ where φ is an alternative of ψ that asymmetrically entails it; that is,
they are ignorance implications. In some cases, primary implicatures can be
strengthened to “secondary” implicatures as described in (44).

(44) If ¬K(ψ) is a primary implicature of φ and K(¬ψ) is consistent with
the conjunction of φ and all primary implicatures of φ, then K(¬ψ) is
a secondary implicature of φ.

Secondary implicatures do not involve ignorance, and instead express cer-
tainty that stronger alternatives do not hold: they are upper-bounding (scalar)
implicatures. In order to show that the ignorance implications of Class B
numerals arise pragmatically, then, I need to show that Class B modified
numerals give rise to (appropriate) primary implicatures but not to secondary
implicatures, and that Class A modified numerals do not give rise to primary
or secondary implicatures. And the way I do that is in terms of the theory of
alternatives for utterances involving numerals.

Along with Sauerland and others in the neo-Gricean tradition, I adopt the
view that the alternatives relevant for implicature calculation are derived by
substitution of expressions that form a quantitative or “Horn” scale (see e.g.
Horn 1972, Gazdar 1977, Hirschberg 1985, Matsumoto 1995, Sauerland 2004).
In virtually all work on the semantics and pragmatics of numerals since Horn
1972, the set of basic number words is assumed to form a Horn scale, an
assumption that is indeed necessary to derive two-sided utterance content
if sentences containing numerals “assert lower-boundedness”, as Horn 1972
claims in the quotation at the beginning of the previous section.

However, as several authors have pointed out, the very same assumptions
that provide the desired result for sentences with unmodified numerals lead
to problems with sentences containing modified numerals (see e.g. Krifka
1998, Fox & Hackl 2007, Meyr 2013). If numerals form Horn scales, then each
of the following sentences should have alternatives in which six is replaced
by other numerals:

(45) a. This airplane has six emergency exits.

b. This airplane has at least six emergency exits.

c. This airplane has more than six emergency exits.

But if this is correct, we now need to explain not only why (45b) but not
(45c) generates uncertainty implicatures, but also why neither (45b) nor
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(45c) have upper-bounding implicatures. The literature contains different
proposals for how to deal with this problem, which range from stipulating
differences between modifiers in the ways that they interact with alternatives
(Krifka 1998, Geurts & Nouwen 2007) to exploiting the underlying structure
of quantity scales (Fox & Hackl 2007), but each account has its own empirical
and theoretical shortcomings (see Meyr 2013 for discussion).

Here I want to propose a different kind of explanation for the absence of
upper-bounding implicatures in (45b–c), which will also turn out to provide
the basis for an explanation of why only Class B modifiers give rise to
ignorance implications: numerals do not form Horn scales. Clearly, if the
de-Fregean semantics of bare numerals presented in the previous section is
correct, then is it not necessary to assume that numerals form Horn scales to
derive an upper-bounding implication in examples like (46a), because this
is already part of the semantic content of the sentence. But more than that,
it arguably follows from the de-Fregean semantic analysis that numerals do
not form Horn scales, since numerals qua de-Fregean generalized quantifiers
are non-monotonic relative to other numerals, and Horn scales are generally
taken to consist of items that support a quantitative ordering (Horn 1972,
Gazdar 1977, Hirschberg 1985, Matsumoto 1995).

Instead, I propose that the Horn scales that are relevant for the calculation
of implicatures of sentences containing numerals consist of all the modified
and unmodified variants of those particular numerals.4 On this view, the
alternatives that feed into the calculation of the implicatures associated with
an utterance of (46), where “ ” is filled by some form of the numeral six, are
the sentences in (46a–c) (or the propositions they express) and other Class
A/B variants.

(46) This airplane has emergency exits.

a. This airplane has six emergency exits.

b. This airplane has more/fewer than six emergency exits.

c. This airplane as at least/most six emergency exits.

4 Schwarz 2013 resists this move, pointing out that at least/most have different distributions
from more/fewer than. This is correct, and raises questions about the generality of the
analysis proposed here, which I will address in the conclusion. But difference of distribution
is not an impediment to forming a Horn scale. Adnominal all and some have different
distributions (e.g., the former can float; the latter cannot), and yet it is clear that they can be
members of the same Horn scales.
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In the case of an utterance of a sentence with an unmodified numeral, such
as (46a), no primary implicatures are generated because none of the alter-
natives in (46b–c) entail the utterance. The same holds for an utterance of
a sentence with a Class A modified numeral such as more/fewer than six
in (46b), and so we explain why Class A modifiers do not generate uncer-
tainty implications: they do not have (relevant) alternatives, and so they
do not generate primary/epistemic implicatures. They do not give rise to
secondary/upper-bounding implicatures for exactly the same reason.

In the case of an utterance of a sentence with a Class B modified numeral,
however, such as at least six or at most six in (46c), the situation is different:
the at least sentence is asymmetrically entailed by the bare numeral alterna-
tive and the more than alternative, and the at most sentence is asymmetrically
entailed by the bare numeral alternative and the fewer than alternative. The
primary implicatures of the two variants of (46c) are therefore as follows:

(47) a. {¬K(= 6),¬K(> 6)} at least six

b. {¬K(= 6),¬K(< 6)} at most six

An utterance of This airplane has at least (most) six emergency exits thus
implicates that it is not known whether the airplane has (exactly) six emer-
gency exits and it is not known whether the airplane has more (fewer) than
six emergency exits. Moreover, strengthening either primary implicature to
its K(¬φ) variant would contradict the conjunction of the assertion plus the
other primary implicature, so we derive no secondary implicatures. Instead,
we derive all and only the correct ignorance inferences of Class B modified
numerals as quantity implicatures.5

5 Schwarz & Shimoyama (2011) present a pragmatic analysis of uncertainty implications of
wa-marked measure phrases in Japanese sentences such as (i) that has essentially the same
structure as the analysis of Class B modifiers that I am proposing here, but differs in a key
semantic respect that makes it problematic for the analysis of modified numerals.

(i) Taro-wa
Taro-top

doitu-ni
Germany-dat

too-ka(-kan)-wa
ten-day(-for)-wa

taiziasimasi-ta.
stay-past

‘Taro stayed in Germany for at least ten days.’

The crucial semantic difference between Schwarz & Shimoyama’s analysis and mine is that
the two-sided alternative to (i) is not based on the semantics of the measure phrase, but
rather on the semantics of the implicit degree predicate that it saturates, which relates
(maximal) events to their durations. Schwarz & Shimoyama take this predicate to denote an
equality relation (‘The duration of e = d’), and propose that the function of -wa is to turn it
into a partial ordering (‘The duration of e ≥ d’). (So semantically, -wa composes not with the
measure phrase, but with this implicit predicate, contrary to appearance.)
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4.2 Interactions with modals

Let us now turn to the interactions of Class B modifiers with modals. First, it
should be clear that we have no problem with epistemic modals: both bare and
modified numerals are degree quantifiers, and (for whatever reason) cannot
take scope over epistemic modals. This was a bit of a puzzle for Nouwen
because his account of uncertainty inferences crucially relied on inserting
an epistemic modal inside the scope of a Class B modifier. Since the current
account does not rely on the presence of an epistemic modal to generate
uncertainty inferences, this problem disappears. The real test, then, involves
the pattern of interactions with root modals. In the next two sections, I look
at the interactions with universal and existential root modals, respectively,
showing how the analysis can derive the range of attested interpretations.
The interactions with root modals are accounted for straightforwardly, but
as we will see, the interactions with existential modals are somewhat more
complicated, in particular the interaction of existential modals and at most.

4.2.1 Universal modals

Let us begin with universal modals and minimizing Class B modifiers. Con-
sider the example in (48), which is predicted to have the two interpretations
in (48a–b), depending on whether the numeral scopes above or below the
modal.

(48) You are required to register for at least three classes.

a. max{n | �[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} ≥ 3
b. �[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} ≥ 3]

Looking first at truth-conditional content, (48a) is true just in case the maxi-
mum n such that in every deontically accessible world there is registration

It should be clear that this analysis will not work for numerals, at least not given the
assumption that the individual argument of the nominal that the numeral composes with is
existentially bound. As we saw in Section 3.1, even if we assume that the degree predicate
involved in counting expresses an equality relation that relates a (plural) individual to its
count (‘The number of x = d’), existential quantification over the individual argument
delivers lower-bounded truth conditions for the sentence as a whole. We could introduce
two-sided truth conditions by maximizing over the individual argument, but this move
has non-trivial semantic consequences, as discussed in great detail in Brasoveanu 2013.
Alternatively, we could assume that it is the numeral/measure phrase itself that introduces
two-sided content, as I have argued in this paper, and treat -wa on a par with other Class B
numeral modifiers.
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in at least n classes is at least three, and (48b) is true just in case every
deontically accessible world is one that involves registration in at least three
classes. These are equivalent truth conditions — and are indeed the truth
conditions of this sentence — but the two logical forms give rise to distinct
implicatures, as pointed out by Büring 2008.

The crucial alternatives for (48a) are sentences in which bare three or
comparative more than three scope over the modal, the meanings of which
I abbreviate as max(�) = 3 and max(�) > 3, respectively. Recall that when
a numeral outscopes a necessity modal, max returns the “deontic lower
bound”: the maximum value that all deontically accessible worlds agree on.
The alternatives to (48a) asymmetrically entail it, so we get the primary impli-
catures in (49), neither of which can be strengthened without contradicting
the combination of the other plus the assertion.

(49) {¬K(max(�) = 3),¬K(max(�) > 3)}

More generally, whenever a Class B modified numeral outscopes a necessity
modal or a possibility modal (as we will shortly see), we derive uncertainty
implicatures. This is what Büring 2008 calls the “speaker insecurity” reading
of a sentence like (48).

The sentence in (48) also has what Büring calls an “authoritative” reading,
which is heard clearly in an example like (50).

(50) Your password must contain at least three numeric characters.

As Büring points out, this reading is derived when the numeral takes scope
below the modal, as in (48b). The relevant alternatives in this case are
�(max = 3) and �(max > 3), both of which asymmetrically entail the
corresponding narrow scope logical form for the Class B modifier, so we
derive the primary implicatures in (51).

(51) {¬K(�(max = 3)),¬K(�(max > 3))}

Unlike what we saw above, the primary implicatures can be strengthened to
the corresponding secondary implicatures:

(52) {K(¬�(max = 3)),K(¬�(max > 3))}

Given that the assertion commits the speaker to certainty that the require-
ments stipulate enrollment in three or more classes, the implicatures in (52)
entail that registration in more than three classes is allowed and registration
in exactly three classes is allowed. This is the authoritative reading.
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Now consider maximizing Class B modifiers with a universal deontic
modal:

(53) You are required to register for at most three classes.

a. max{n | �[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} ≤ 3
b. �[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} ≤ 3]

The proposition in (53a) says that the maximal n such that in every accessible
world there is registration in at least n classes is less than or equal to three.
This reading allows for enrollment in more than three classes, and as we saw
above, it should give rise to an uncertainty implicature. The sentence in (54),
adapted from a sentence that I discovered on a course syllabus, clearly has
this kind of reading.

(54) You will be required to write at most four short critical review papers
on articles assigned in class (though you may write more if you wish),
with the exact number to be determined by the end of the fifth week.

The proposition in in (53b) says that every deontically accessible world
is such that there is registration in three or fewer classes. This is the most
salient interpretation of (53), and is understood authoritatively for the same
reasons that we saw above. The proposition in (53b) gives rise to the primary
implicatures in (55a), which can be strengthened to the secondary impli-
catures in (55b); together with the assertion, these implicatures entail that
registration in exactly three classes is allowed and registration in fewer than
three classes is allowed.

(55) a. {¬K(�(max = 3)),¬K(�(max < 3))}
b. {K(¬�(max = 3)),K(¬�(max < 3))}

The following naturally occurring example quite clearly illustrates the au-
thoritative reading of at most n under a universal deontic modal:

(56) To comply with the US’s bigamy laws, foreign visitors with multiple
wives are required to bring at most one wife into the US.

4.2.2 Existential modals

Let us now turn to minimizing Class B modifiers and existential modals:
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(57) You are allowed to register for at least three classes.

a. max{n | ♦[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} ≥ 3
b. ♦[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} ≥ 3]

The proposition in (57a) says that the maximum number of allowable, regis-
tered-for classes is three or more, which does not entail that it is forbid-
den to register in one or two classes. (Recall that this was a problem for
Nouwen’s analysis of this example.) And since the numeral outscopes the
modal, it should give rise to uncertainty implicatures. (Examples with existen-
tial modals also introduce secondary/upper-bounding implicature based on
alternatives with universal modals, which I will ignore in what follows.) The
example in (58), which is taken from an anti-government website on which
the site’s author documents his beliefs about U.S. government cooperation
with invading grey aliens, provides a nice illustration of this reading.

(58) The greys were also allowed to build at least 3 underground bases in
which to operate out of.

Given the rest of the context surrounding this example, it is clear that the
author is certain only that there are at least three alien bases, and is uncertain
whether the aliens might have been allowed to build more.

When the numeral takes scope below the modal, as in (57b), the resulting
truth conditions are weak but not problematic: there’s a possible world in
which at least three classes are taken. The predicted epistemic implicatures,
however, appear to be incorrect. As shown in (59), given what I have said so
far, the narrow-scope numeral interpretation should implicate that it is not
known whether enrollment in three classes is allowed and it is not known
whether enrollment in more than three classes is allowed, but both of these
implicatures contradict the assertion.

(59) {¬K(♦(max = 3)),¬K(♦(max > 3))}

We might assume that the conflict between implicatures and assertion here
effectively blocks a narrow scope parse, leaving only the speaker uncertainty
meaning associated with (57a) as a viable reading for sentences involving
possibility modals (cf. Büring 2008). I would like to argue, however, that
the narrow-scope parse is possible (and is attested), but that it gives rise
to a different set of implicatures, which in fact constitute an authoritative
reading. To see why, however, let us turn to the case of maximizing Class B
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modifiers and existential modals, where the relevant meaning emerges even
more clearly.

According to the analysis I have presented here, (60) should allow two
parses, corresponding to the readings in (60a–b).

(60) You are allowed to register for at most three classes.

a. max{n | ♦[∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]]} ≤ 3
b. ♦[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} ≤ 3]

When the numeral takes wide scope over the modal, as in (60a), we predict
truth conditions that forbid enrollment in more than three classes, and
uncertainty about the actual cap on the number of courses. This is not the
most salient reading of (60), but it is certainly a possible reading of this type
of sentence, as shown by (61).

(61) Students are allowed to drop at most three of their classes, but I don’t
know the exact number. Maybe they can only drop two.

The more salient reading of (60) however is one that also forbids enrollment
in more than three classes, but lacks uncertainty: it is an authoritative reading.
The narrow-scope interpretation of the modified numeral in (60b) does not
look like a very good candidate to deliver this meaning, however, for two
reasons.

First, the truth conditions appear to be too weak, as pointed out already
by Geurts & Nouwen 2007 and Nouwen 2010. The proposition in (60b) says
merely that there is a deontically accessible world in which there’s registration
in three or fewer classes, which does not rule out registration in more classes.
Yet (62a) sounds like a contradiction, unlike its variants with the Class A
modifier fewer than or with an unmodified numeral:

(62) a. Third-year students are allowed to register for at most three classes,
#but they may register for more if they want to.

b. Third-year students are allowed to register for (fewer than) three
classes, but they may register for more if they want to.

It is precisely because of the contrast between (62a) and (62b) that Nouwen
2010 rejects the semantic analysis of Class B numerals that I have proposed
here.

The second apparent problem for the putative narrow scope numeral
interpretation of (60) in (60b) is the same one that we ran into with the
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corresponding narrow-scope reading of at least in (57b): we derive the wrong
implicatures. The predicted primary implicatures of (60b) ought to be the
ones in (63): it is not known whether registration in exactly three classes is
allowed, and it is not known whether registration in fewer than three classes
is allowed.

(63) {¬K(♦(max = 3)),¬K(♦(max < 3))}

But these are obviously incompatible with an authoritative understanding
of (60), and so, together with Nouwen’s observation about the weakness of
the narrow scope at most truth conditions, appear to present a significant
problem for my “naïve” extension of the de-Fregean semantics to Class B
modifiers.

In fact, the semantic analysis I have proposed is able to derive precisely
the correct implicatures, provided we adopt a proposal for the computation
of alternatives that has been introduced independently in the literature to
account for the so-called “free choice” interpretation of disjunction under
modals, which shows a similar pattern of behavior to what we have seen
here. (I am grateful to Michael Franke for suggesting this line of explanation
to me.) The free choice interpretation of disjunction is illustrated in (64).

(64) Kim is allowed to stay home on Mondays or Fridays.

Among the implications associated with an utterance (64) are the implications
that Kim is allowed to stay home on Mondays and that Kim is allowed to
stay home on Fridays; these, together with the assertion, constitute the
free-choice interpretation. (There is also an exclusivity implication — Kim
cannot stay home on both Mondays and Fridays — that I will ignore in what
follows.) However, if the alternatives of (64) include propositions based on
the individual disjuncts, as it is necessary to assume in order to derive
uncertainty implicatures of simple disjunctions (see e.g. Sauerland 2004, Fox
2007, Franke 2011), then we derive the primary implicatures in (65), which
are incompatible with the free-choice interpretation.

(65) {¬K(♦(m)),¬K(♦(f ))}

There is a family of solutions to this problem in the literature which
differ in implementation but agree in the general idea that, in addition to the
“simple” alternatives that give rise to the incorrect implicatures in (65), it is
possible to generate a set of “exhaustified” alternatives, which deliver the
primary implicatures in (66a) (Kratzer & Shimoyama 2002, Fox 2007, Franke
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2011): it is not known whether Kim is only allowed to stay home on Mondays
and it it not known whether Kim is only allowed to stay home on Fridays.

(66) a. {¬K(♦(m)∧¬♦(f )),¬K(♦(f )∧¬♦(m))}
b. {K¬(♦(m)∧¬♦(f )),K¬(♦(f )∧¬♦(m))}

The primary implicatures in (66a) can be further strengthened to the sec-
ondary implicatures in (66b): it is known that it is not the case that Kim can
only stay home on Monday, and it is known that it is not the case that Kim
can only stay home on Friday. Together with the assertion, these implicatures
entail that Kim is allowed to stay home on Monday and that Kim is allowed
to stay home on Friday, which are precisely the free choice inferences that
we wanted to derive.

Returning to the case of modified numerals, once we introduce exhaus-
tified alternatives, the primary implicatures based on the narrow-scope nu-
meral interpretation in (60b) are the ones shown in (67a), which can be
strengthened to the secondary implicatures in (67b), just as we saw with the
case of disjunction.

(67) a. {¬K(♦(max = 3)∧¬♦(max < 3)),

¬K(♦(max < 3)∧¬♦(max = 3))}
b. {K¬(♦(max = 3)∧¬♦(max < 3)),

K¬(♦(max < 3)∧¬♦(max = 3))}

The implicatures in (67b), together with the semantic content of (60b), entail
that enrollment in three classes is allowed and that enrollment in fewer than
three classes is allowed; that is, that enrollment in zero, one, two or three
classes are all consistent with the rules. Allowing for exhaustification of
alternatives thus derives a core part of what the authoritative reading of at
most in (60) conveys. However, as we saw above, the authoritative reading
also conveys that enrollment in more than three classes is not allowed, and
since the input to the pragmatic analysis described above is a logical form
in which the modified numeral takes narrow scope relative to the possibility
modal, the problem of too-weak truth conditions remains. The combination of
narrow scope semantic content plus quantity implicatures gives authoritative
permission for enrollment in zero to three classes, but does not rule out
enrollment in more than three classes, so it appears that we still lack an
explanation for the fact that (62a) (but not (62b)) sounds like a contradiction.

I would like to suggest that the upper bound that we hear in examples like
(62a) does not come from the semantics, but instead arises from additional
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pragmatic reasoning, in this case about what is permitted, given what is
conveyed by the semantic content plus the quantity implicatures. As noted
by Sauerland 2004, in order to license computation of secondary implicatures
in the first place, we must assume that the speaker is knowledgeable about
the question under discussion. If the question under discussion is what the
rules say about the number of classes that can be taken, if the knowledge-
able speaker tells us that the rules permit registration in zero to three (the
conjunction of the truth conditions plus the quantity implicatures), then we
should assume that this is all that the rules allow. Considering higher values
would imply that the speaker either didn’t tell us all that she has authoritative
knowledge about, and so is not communicating in accord with pragmatic
norms about the issuing of permission, or that she wasn’t knowledgeable
in the first place. Both cases are incompatible with the quantity reasoning
necessary to derive the authoritative meaning, so the conflict between the
first and second sentences in (62a), on this view, is not at the level of truth
conditions, but at the level of assumptions about the speaker and what her
role in the communicative exchange must be like in order to support the
pragmatic reasoning that leads to the authoritative meaning. The reason why
there is no conflict in the case of a narrow-scope Class A modified numeral or
unmodified numeral is that the utterance of such sentences do not give rise to
quantity reasoning in the first place, since on the theory I have proposed here
they do not have stronger alternatives. Paradoxically, then, it is by using the
weakest semantic configuration — at most (rather than fewer than or the bare
numeral) plus narrow scope — that the speaker is able to make the strongest
utterance, since only this configuration licenses the quantity calculation that
leads to the authoritative reading.6

There are a couple of pieces of evidence in favor of this explanation, and
against an account that attempts to “hard-wire” the special behavior of at
most in some way or other. First, if the reasoning is correct, then we should
see the same effect when we make the quantity implicatures explicit in the
semantic content. (68), which sounds more like (62a) than the variant of (62b)
with the bare numeral, indicates that this is the case.

6 The reasoning outlined here also helps us understand why we don’t get an implicature based
on the modal (K¬�(max ≤ 3)), which we might otherwise expect given the Sauerland-style
approach to implicature calculation that I have adopted (see in particular Sauerland 2004,
p. 378). Such an implicature would eliminate the upper bound and so would be incompatible
with the assumption that what the knowledgeable authority does not allow is not allowed.
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(68) #Third-year students are allowed to register for zero to three classes,
but they may register for more if they want to.

Second, it is possible to find examples in which at most clearly has scope
below an existential modal, and the meaning derived above (truth conditions
plus authoritative implicatures) is exactly what we want. The last sentence in
(69), taken from a job advertisement on the internet, is one such example:

(69) The physical demands described here are representative of those that
must be met by an employee to successfully perform the essential
functions of this job. Reasonable accommodations may be made to
enable individuals with disabilities to perform the essential functions.
Must be able to lift at most 70lbs.

There are in principle three different ways that this sentence could be inter-
preted, depending on whether the modified measure phrase (which I treat
analogously to a numeral) has widest, intermediate, or narrowest scope:

(70) a. max{n | �[♦[lift(n)]]} ≤ 70lbs

b. �[max{n | ♦[lift(n)]} ≤ 70lbs]
c. �[♦[max{n | lift(n)} ≤ 70lbs]]

The reading in (70b) is clearly wrong, because it rules out potential employees
who have an ability to lift more than seventy pounds, which is not how the
advertisement is understood: nobody will be turned away (only) because they
are too strong. The reading in (70a) does not rule out people who can lift more
than seventy pounds (for the reasons we have seen), but it should generate
an uncertainty implicature about the actual weight-lifting abilities that are
required, which is also not how the advertisement is understood. Instead,
the advertisement is understood to convey the information in (70c) — that
it is required that it be within an employee’s ability to lift a maximal weight
that falls in the open interval bounded below by zero and closed on the top
by seventy — plus the authoritative implicatures that are derived according
to the algorithm described above: it is not only required that it be within an
employee’s ability to lift less than seventy pounds, and it is not only required
that it be within an employee’s ability to lift exactly seventy pounds. The
difference between this case and one in which the existential modal is not
embedded (e.g., This employee can lift at most 70lbs, in which the upper
bound inference returns) is that the question under discussion is not the
employee’s abilities, but rather the job requirements, and it is possible to
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convey maximal information about the job requirements without introducing
an upper bound on abilities.

Returning to the case of at least, the same reasoning that derives au-
thoritative implicatures for at most under an existential modal will derive
corresponding authoritative implicatures for at least under an existential
modal. The secondary implicatures associated with the narrow scope inter-
pretation of at least three in (71a), for example, are shown in (71b).

(71) You are allowed to register for at least three classes.

a. ♦[max{n | ∃x[reg(x)(you)∧ classes(x)∧ #(x) = n]} ≥ 3]
b. {K¬(♦(max = 3)∧¬♦(max > 3)),

K¬(♦(max > 3)∧¬♦(max = 3))}

The combination of the semantic and pragmatic content here says that
registration in three classes is acceptable and registration in more than three
classes is acceptable, and moreover doesn’t rule out registration in fewer
classes. This kind of reading does not provide particularly useful information
about what’s allowed, and so is likely to be highly dispreferred (cf. Büring
2008). But the following naturally occurring example suggests that it is not
impossible:

(72) Previously in Germany, students were allowed to take at least five years
to complete the Magister’s diploma, the basic university degree. But
now, Germany has adopted the Anglo-Saxon style of bachelor’s and
master’s degrees. The bachelor’s degree is designed to take three years
to complete; the master’s, a further two years.

Here there is no uncertainty about the number of years German students
were allowed to take to finish their diplomas: it was five or more, and we
know that more than five was an option because the former system is being
contrasted to the new one, in which students must finish within five years.7

7 Doris Penka (p.c.) suggests that the apparent authoritative reading here — or rather, the
apparent absence of an ignorance implicature — could be explained instead in terms of the
interaction between the superlative modifier and the bare plural subject, on analogy to the
interaction between superlatives and universally quantified subjects (see e.g. Schwarz &
Shimoyama 2011) in examples like (ia).

(i) a. Every student registered for at least three classes.

b. ∀x[student(x)→max{n | ∃y[reg(y)(x)∧ class(y)∧ #(y) = n]} ≥ 3]
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5 Concluding remarks

In this paper, I have presented a “de-Fregean” semantics for modified and
unmodified numerals as generalized quantifiers over degrees, in which bare
numerals, Class A modified numerals and Class B modified numerals all have
essentially the same semantic analysis, differing only in the kind of ordering
relation they introduce over the unique (maximal) degree that satisfies their
scope. The denotations in (73) illustrate the basic pattern for unmodified six,
Class A modified more than six, and Class B modified at least six.

(73) a. �six� = λP〈d,t〉.max{n | P(n)} = 6
b. �more than six� = λP〈d,t〉.max{n | P(n)} > 6
c. �at least six� = λP〈d,t〉.max{n | P(n)} ≥ 6

I have shown that this account can derive the uncertainty implications as-
sociated with Class B modifiers as Quantity implicatures that arise from the
fact that a sentence with a Class B modified numeral n is weaker than the
relevant alternatives, which I argued are the corresponding sentences with
unmodified n or Class A modified n. I implemented my analysis in terms
of a fully neo-Gricean theory of implicature calculation, though the core
proposals are compatible with other approaches. But, crucially, the constraint
that numerals do not form Horn scales — or, more generally, do not con-
stitute alternatives for other numerals — must be retained. I suggested that
this constraint is related to the fact that, given a de-Fregean semantics, bare
numerals are non-monotonic, which in turn points to a semantic basis for the
determination of the alternatives relevant to implicature calculation, rather
than a structural basis, as argued in recent work by Katzir 2007.

There are a number of respects in which the proposals I have made
here are incomplete, which should be pointed out. First, there are individual
differences between the modifiers in the Class A and Class B groups having

Assuming that the degree quantifier takes scope below the universal quantifier, as shown
in (ib) (Kennedy 1999, Heim 2000), the primary implicatures should be that it is not known
that every student is such that she registered for exactly three classes and that it is not
known that every student is such that she registered for more than three classes. But these
implicatures are consistent with knowing for every student exactly how many classes she
took, as long as the resulting distribution gives back a range of enrollment numbers whose
lowest value is three. Whether this treatment can be extended to (72) depends on whether
it is plausible to analyze the bare plural here as involving distributive quantification vs. as
kind-denoting, and also on a careful consideration of the predicted meanings, in particular
given the fact that students appears to have scope below the modal.
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to do with, for example, whether they are compatible with a single degree
satisfying their scope, or whether they require an interval (Nouwen 2008a,
Schwarz, Buccola & Hamilton 2012, Rett 2014). A more fine-grained analysis
of the lexical semantics of the various modifiers and the way their uses
as numeral modifiers relate to their other uses as comparative or locative
morphemes is necessary to provide a full account of these differences.

Second, I have said very little about how a degree semantics for modified
and unmodified numerals interacts with quantification over the individual
argument of the nominal, and in particular with issues of distributivity,
cumulativity, etc. (see e.g. Krifka 1998, Brasoveanu 2013), other than to
stipulate that the latter is bound by a default existential quantifier.

Finally, and most significantly, the proposals I have made here are surely
insufficient as a full semantic account of the superlative modifiers at least and
at most (and probably insufficient as an account of the adverbials minimally
and maximally as well). The denotations that I gave for these modifiers in
Section 3.2 treat them as expressions that map degrees (in particular, singular
term numeral denotations) to generalized quantifiers over degrees, which
leads to the prediction that they should combine only with degree-denoting
expressions. But this prediction is wrong: it is a well-known feature of these
expressions both that they can combine with a range of different categories,
as shown in (74b–c). (I use at most for illustration, but similar examples can
be constructed with at least.)

(74) a. We should invite at most three linguists, not two.

b. We should invite at most Kim, Lee and Pat, not Mo as well.

c. We should invite at most some linguists, not some philosophers as
well.

They can, moreover, be separated from the expression with which they are
understood to associate:

(75) a. We should at most invite three linguists.

b. We should at most invite Kim, Lee and Pat.

c. We should at most invite some linguists.

(76) a. We should invite three linguists at most.

b. We should invite Kim, Lee and Pat at most.

c. We should invite some linguists at most.
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This latter syntactic fact is reflected in the semantics by focus-sensitivity: in
both split and non-split forms, focus determines what is understood to be
the associate of the modifier.

(77) a. We should at most invite three linguists,
not four/??three philosophers.

b. We should at most invite three linguists,
not ??four/three philosophers.

(78) a. We should invite at most three linguists,
not four/??three philosophers.

b. We should invite at most three linguists,
not ??four/three philosophers.

These kinds of facts have led a number of authors to develop accounts
of these modifiers within a focus/alternatives semantics (see e.g. Krifka
1998, Geurts & Nouwen 2007, Cohen & Krifka 2010), with recent work by
Coppock & Brochhagen 2013 geared specifically towards showing how this
kind of approach, together with an inquisitive semantics, can capture the
Class A/Class B distinction. Given that such an approach is likely to be
independently necessary in order to account for focus-sensitivity, cross-
categoriality, and split variants of modified numerals, it is worth asking
whether this will ultimately make the degree-theoretic, de-Fregean analysis I
have proposed here superfluous.

Although a full answer to this question goes beyond the scope of this pa-
per, my guess is that both kinds of analysis will ultimately be necessary, and
that a fully comprehensive treatment of modified and unmodified numerals
will involve integrating the focus-sensitive and degree-theoretic approaches.
The latter provides us with a compositional framework that reflects the
growing evidence that modified and unmodified numerals are syntactic and
semantic constituents that saturate a quantity position inside the nominal
projection and can take scope independently of the nominal with which they
compose on the surface (see e.g. Hackl 2000, Heim 2000, Takahashi 2006,
Nouwen 2008b, Kennedy & Stanley 2009, Nouwen 2010, Kennedy 2013).

It also provides us with a simple account of minimal pairs like the follow-
ing, where the (a) examples are strange because they (unlike the (b) examples)
implicate uncertainty about how many sides a hexagon has:

(79) a. #A hexagon has no more than ten sides.

b. A hexagon does not have more than ten sides.
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(80) a. #A hexagon has no fewer than four sides.

b. A hexagon does not have fewer than four sides.

In a fully compositional semantics of comparatives, more/fewer than are
properly analyzed not as introducing the simple ordering relations > and
<, but as introducing a requirement for a positive difference in degree (see
e.g. von Stechow 1984, Schwarzschild 2005, Alrenga & Kennedy 2014). The
function of the negative differential expression no is to say that there is no
positive difference (Alrenga & Kennedy 2014), so no more than is consistent
with either = or <, and no fewer than is consistent with either = or >. The
result is that no more/fewer than have the same ordering entailments as at
most/at least, so it is no surprise, from a degree-theoretic perspective, that
they show the Class B uncertainty pattern.8

Given these considerations, it seems that even an alternatives-based anal-
ysis of superlative modifiers needs to hypothesize such expressions to take
on meanings that allow them to combine with numerals to derive generalized
quantifiers over degrees. And indeed, this is the approach taken by Coppock
& Brochhagen 2013, who show that the basic meanings they assume for at
most and at least as propositional modifiers can be shifted into meanings
that combine with a numeral, generating a generalized quantifier over de-
grees which introduces truth conditions that are essentially equivalent to
what we get on the analysis of at least/most n that I have proposed here.
What we also need to ask is whether it is also possible to go in the other
direction: to move from a degree-based semantics and pragmatics for com-
parative and superlative modifiers — or from an even more basic semantics
and pragmatics for comparative and superlative degree morphology — to
an alternatives-based semantics and pragmatics that has the same breadth
of coverage as Coppock & Brochhagen’s, and that derives the distributional
differences between comparative and superlative modifiers.

8 What is a surprise is that unlike at most/least and other Class B modifiers, they can give rise
to scalar bounding inferences, so that for instance no more than ten is often understood to
convey ten. (This is not the reason for the unacceptability of (79a) and (80a), however: as
we saw at the very beginning of the paper, it is perfectly acceptable to falsely assert that a
hexagon has ten or four sides.) Nouwen 2008b concludes from this that at most/least and
other Class B modifiers cannot mean the same thing as no more/fewer than, but the fact
that no more/fewer than also introduce uncertainty inferences (a fact that Nouwen does not
mention) shows that the situation is more complicated. I do not know what is going on here,
though I suspect that the extra complexity of no more/fewer than — differential no is itself a
degree quantifier (Alrenga & Kennedy 2014) — is significant; cf. Rett’s (2014) discussion of
“measure phrase equatives” such as as many as six.
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